Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Space Sci Rev ; 218(8): 72, 2022.
Article in English | MEDLINE | ID: mdl-36514324

ABSTRACT

The NASA InSight Lander on Mars includes the Heat Flow and Physical Properties Package HP3 to measure the surface heat flow of the planet. The package uses temperature sensors that would have been brought to the target depth of 3-5 m by a small penetrator, nicknamed the mole. The mole requiring friction on its hull to balance remaining recoil from its hammer mechanism did not penetrate to the targeted depth. Instead, by precessing about a point midway along its hull, it carved a 7 cm deep and 5-6 cm wide pit and reached a depth of initially 31 cm. The root cause of the failure - as was determined through an extensive, almost two years long campaign - was a lack of friction in an unexpectedly thick cohesive duricrust. During the campaign - described in detail in this paper - the mole penetrated further aided by friction applied using the scoop at the end of the robotic Instrument Deployment Arm and by direct support by the latter. The mole tip finally reached a depth of about 37 cm, bringing the mole back-end 1-2 cm below the surface. It reversed its downward motion twice during attempts to provide friction through pressure on the regolith instead of directly with the scoop to the mole hull. The penetration record of the mole was used to infer mechanical soil parameters such as the penetration resistance of the duricrust of 0.3-0.7 MPa and a penetration resistance of a deeper layer ( > 30 cm depth) of 4.9 ± 0.4 MPa . Using the mole's thermal sensors, thermal conductivity and diffusivity were measured. Applying cone penetration theory, the resistance of the duricrust was used to estimate a cohesion of the latter of 2-15 kPa depending on the internal friction angle of the duricrust. Pushing the scoop with its blade into the surface and chopping off a piece of duricrust provided another estimate of the cohesion of 5.8 kPa. The hammerings of the mole were recorded by the seismometer SEIS and the signals were used to derive P-wave and S-wave velocities representative of the topmost tens of cm of the regolith. Together with the density provided by a thermal conductivity and diffusivity measurement using the mole's thermal sensors, the elastic moduli were calculated from the seismic velocities. Using empirical correlations from terrestrial soil studies between the shear modulus and cohesion, the previous cohesion estimates were found to be consistent with the elastic moduli. The combined data were used to derive a model of the regolith that has an about 20 cm thick duricrust underneath a 1 cm thick unconsolidated layer of sand mixed with dust and above another 10 cm of unconsolidated sand. Underneath the latter, a layer more resistant to penetration and possibly containing debris from a small impact crater is inferred. The thermal conductivity increases from 14 mW/m K to 34 mW/m K through the 1 cm sand/dust layer, keeps the latter value in the duricrust and the sand layer underneath and then increases to 64 mW/m K in the sand/gravel layer below. Supplementary Information: The online version contains supplementary material available at 10.1007/s11214-022-00941-z.

2.
J Geophys Res Planets ; 127(5): e2022JE007190, 2022 May.
Article in English | MEDLINE | ID: mdl-35865505

ABSTRACT

Observations of the South Polar Residual Cap suggest a possible erosion of the cap, leading to an increase of the global mass of the atmosphere. We test this assumption by making the first comparison between Viking 1 and InSight surface pressure data, which were recorded 40 years apart. Such a comparison also allows us to determine changes in the dynamics of the seasonal ice caps between these two periods. To do so, we first had to recalibrate the InSight pressure data because of their unexpected sensitivity to the sensor temperature. Then, we had to design a procedure to compare distant pressure measurements. We propose two surface pressure interpolation methods at the local and global scale to do the comparison. The comparison of Viking and InSight seasonal surface pressure variations does not show changes larger than ±8 Pa in the CO2 cycle. Such conclusions are supported by an analysis of Mars Science Laboratory (MSL) pressure data. Further comparisons with images of the south seasonal cap taken by the Viking 2 orbiter and MARCI camera do not display significant changes in the dynamics of this cap over a 40 year period. Only a possible larger extension of the North Cap after the global storm of MY 34 is observed, but the physical mechanisms behind this anomaly are not well determined. Finally, the first comparison of MSL and InSight pressure data suggests a pressure deficit at Gale crater during southern summer, possibly resulting from a large presence of dust suspended within the crater.

3.
J Geophys Res Planets ; 125(8): e2020JE006502, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32999801

ABSTRACT

Comprehensive analysis of remote sensing data used to select the Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) landing site correctly predicted the atmospheric temperature and pressure profile during entry and descent, the safe landing surface, and the geologic setting of the site. The smooth plains upon which the InSight landing site is located were accurately predicted to be generally similar to the Mars Exploration Rover Spirit landing site with relatively low rock abundance, low slopes, and a moderately dusty surface with a 3-10 m impact fragmented regolith over Hesperian to Early Amazonian basaltic lava flows. The deceleration profile and surface pressure encountered by the spacecraft during entry, descent, and landing compared well (within 1σ) of the envelope of modeled temperature profiles and the expected surface pressure. Orbital estimates of thermal inertia are similar to surface radiometer measurements, and materials at the surface are dominated by poorly consolidated sand as expected. Thin coatings of bright atmospheric dust on the surface were as indicated by orbital albedo and dust cover index measurements. Orbital estimates of rock abundance from shadow measurements in high-resolution images and thermal differencing indicated very low rock abundance and surface counts show 1-4% area covered by rocks. Slopes at 100 to 5 m length scale measured from orbital topographic and radar data correctly indicated a surface comparably smooth and flat as the two smoothest landing sites (Opportunity and Phoenix). Thermal inertia and radar data indicated the surface would be load bearing as found.

4.
Nat Commun ; 11(1): 1014, 2020 02 24.
Article in English | MEDLINE | ID: mdl-32094337

ABSTRACT

The Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) spacecraft landed successfully on Mars and imaged the surface to characterize the surficial geology. Here we report on the geology and subsurface structure of the landing site to aid in situ geophysical investigations. InSight landed in a degraded impact crater in Elysium Planitia on a smooth sandy, granule- and pebble-rich surface with few rocks. Superposed impact craters are common and eolian bedforms are sparse. During landing, pulsed retrorockets modified the surface to reveal a near surface stratigraphy of surficial dust, over thin unconsolidated sand, underlain by a variable thickness duricrust, with poorly sorted, unconsolidated sand with rocks beneath. Impact, eolian, and mass wasting processes have dominantly modified the surface. Surface observations are consistent with expectations made from remote sensing data prior to landing indicating a surface composed of an impact-fragmented regolith overlying basaltic lava flows.

SELECTION OF CITATIONS
SEARCH DETAIL
...