Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(11)2022 Jun 05.
Article in English | MEDLINE | ID: mdl-35683971

ABSTRACT

Regenerated lignocellulose nanofibrils (RLCNFs) have recently piqued the interest of researchers due to their widespread availability and ease of extraction. After dewaxing, we treated sisal fiber with alkali, followed by heating and agitation, to obtain RLCNFs, which were then vacuum oven-dried. We used a variety of characterization techniques, including XRD, SEM, and FT-IR, to assess the effects of the alkali treatment on the sisal fiber. Various characterizations demonstrate that lignocellulose fibrils have been successfully regenerated and contaminants have been removed. In addition, employing the RLCNFs as a stabilizer, stable Pickering emulsions were created. The effects of RLCNF concentration in the aqueous phase and water-to-oil volume ratio on stability were studied. The RLCNFs that have been produced show promise as a stabilizer in Pickering emulsions.

2.
ACS Omega ; 6(50): 35104-35111, 2021 Dec 21.
Article in English | MEDLINE | ID: mdl-34963991

ABSTRACT

The utilization of solar energy to make human lives better has been one of the primary and green approaches adopted by ordinary people and researchers for decades. This approach has recently gained a lot of attention as a way to tackle clean water scarcity in remote areas. Costly components, complex manufacturing procedures with rarely available equipment, and a surface to condense water vapors are challenges in the way of its application in the required areas. Here, we propose a complete system to solve this problem with a handmade light absorber and a superhydrophilic surface (antifogging) to get vapors back to collect clean water. Our handmade flower-like light absorber stitched by crochet work, the single stitch method, was able to get a decent evaporation rate of 1.75 kg/m2·h in pure water and slightly lower rates of 1.62 and 1.65 kg/m2·h with brine and pond water, respectively. Still, our proposed superhydrophilic coated surface can collect ∼37% more water than the pristine surface. This system has a huge potential for use in rural areas because of multiple key advantages, such as simple technology, readily available low-cost raw materials, and easy fabrication.

SELECTION OF CITATIONS
SEARCH DETAIL
...