Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Mon Not R Astron Soc ; 487(3): 4083-4092, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31258198

ABSTRACT

When a star gets too close to a supermassive black hole, it is torn apart by the tidal forces. Roughly half of the stellar mass becomes unbound and flies away at tremendous velocities - around 104 km s-1. In this work, we explore the idea that the shock produced by the interaction of the unbound debris with the ambient medium gives rise to the synchrotron radio emission observed in several tidal disruption event (TDE). We use a moving mesh numerical simulation to study the evolution of the unbound debris and the bow shock around it. We find that as the periapse distance of the star decreases, the outflow becomes faster and wider. A TDE whose periapse distance is a factor of 7 smaller than the tidal radius can account for the radio emission observed in ASASSN-14li. This model also allows us to obtain a more accurate estimate for the gas density around the centre of the host galaxy of ASASSN-14li.

2.
Nature ; 554(7691): 207-210, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29261643

ABSTRACT

GW170817 was the first gravitational-wave detection of a binary neutron-star merger. It was accompanied by radiation across the electromagnetic spectrum and localized to the galaxy NGC 4993 at a distance of 40 megaparsecs. It has been proposed that the observed γ-ray, X-ray and radio emission is due to an ultra-relativistic jet being launched during the merger (and successfully breaking out of the surrounding material), directed away from our line of sight (off-axis). The presence of such a jet is predicted from models that posit neutron-star mergers as the drivers of short hard-γ-ray bursts. Here we report that the radio light curve of GW170817 has no direct signature of the afterglow of an off-axis jet. Although we cannot completely rule out the existence of a jet directed away from the line of sight, the observed γ-ray emission could not have originated from such a jet. Instead, the radio data require the existence of a mildly relativistic wide-angle outflow moving towards us. This outflow could be the high-velocity tail of the neutron-rich material that was ejected dynamically during the merger, or a cocoon of material that breaks out when a jet launched during the merger transfers its energy to the dynamical ejecta. Because the cocoon model explains the radio light curve of GW170817, as well as the γ-ray and X-ray emission (and possibly also the ultraviolet and optical emission), it is the model that is most consistent with the observational data. Cocoons may be a ubiquitous phenomenon produced in neutron-star mergers, giving rise to a hitherto unidentified population of radio, ultraviolet, X-ray and γ-ray transients in the local Universe.

3.
Science ; 358(6370): 1579-1583, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29038372

ABSTRACT

Gravitational waves have been detected from a binary neutron star merger event, GW170817. The detection of electromagnetic radiation from the same source has shown that the merger occurred in the outskirts of the galaxy NGC 4993, at a distance of 40 megaparsecs from Earth. We report the detection of a counterpart radio source that appears 16 days after the event, allowing us to diagnose the energetics and environment of the merger. The observed radio emission can be explained by either a collimated ultrarelativistic jet, viewed off-axis, or a cocoon of mildly relativistic ejecta. Within 100 days of the merger, the radio light curves will enable observers to distinguish between these models, and the angular velocity and geometry of the debris will be directly measurable by very long baseline interferometry.

4.
Science ; 358(6370): 1559-1565, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29038373

ABSTRACT

Merging neutron stars offer an excellent laboratory for simultaneously studying strong-field gravity and matter in extreme environments. We establish the physical association of an electromagnetic counterpart (EM170817) with gravitational waves (GW170817) detected from merging neutron stars. By synthesizing a panchromatic data set, we demonstrate that merging neutron stars are a long-sought production site forging heavy elements by r-process nucleosynthesis. The weak gamma rays seen in EM170817 are dissimilar to classical short gamma-ray bursts with ultrarelativistic jets. Instead, we suggest that breakout of a wide-angle, mildly relativistic cocoon engulfing the jet explains the low-luminosity gamma rays, the high-luminosity ultraviolet-optical-infrared, and the delayed radio and x-ray emission. We posit that all neutron star mergers may lead to a wide-angle cocoon breakout, sometimes accompanied by a successful jet and sometimes by a choked jet.

5.
Nature ; 455(7210): 183-8, 2008 Sep 11.
Article in English | MEDLINE | ID: mdl-18784718

ABSTRACT

Long-duration gamma-ray bursts (GRBs) release copious amounts of energy across the entire electromagnetic spectrum, and so provide a window into the process of black hole formation from the collapse of massive stars. Previous early optical observations of even the most exceptional GRBs (990123 and 030329) lacked both the temporal resolution to probe the optical flash in detail and the accuracy needed to trace the transition from the prompt emission within the outflow to external shocks caused by interaction with the progenitor environment. Here we report observations of the extraordinarily bright prompt optical and gamma-ray emission of GRB 080319B that provide diagnostics within seconds of its formation, followed by broadband observations of the afterglow decay that continued for weeks. We show that the prompt emission stems from a single physical region, implying an extremely relativistic outflow that propagates within the narrow inner core of a two-component jet.

6.
Nature ; 444(7122): 1053-5, 2006 Dec 21.
Article in English | MEDLINE | ID: mdl-17183318

ABSTRACT

Over the past decade, our physical understanding of gamma-ray bursts (GRBs) has progressed rapidly, thanks to the discovery and observation of their long-lived afterglow emission. Long-duration (> 2 s) GRBs are associated with the explosive deaths of massive stars ('collapsars', ref. 1), which produce accompanying supernovae; the short-duration (< or = 2 s) GRBs have a different origin, which has been argued to be the merger of two compact objects. Here we report optical observations of GRB 060614 (duration approximately 100 s, ref. 10) that rule out the presence of an associated supernova. This would seem to require a new explosive process: either a massive collapsar that powers a GRB without any associated supernova, or a new type of 'engine', as long-lived as the collapsar but without a massive star. We also show that the properties of the host galaxy (redshift z = 0.125) distinguish it from other long-duration GRB hosts and suggest that an entirely new type of GRB progenitor may be required.

7.
Nature ; 442(7106): 1014-7, 2006 Aug 31.
Article in English | MEDLINE | ID: mdl-16943832

ABSTRACT

Over the past decade, long-duration gamma-ray bursts (GRBs)--including the subclass of X-ray flashes (XRFs)--have been revealed to be a rare variety of type Ibc supernova. Although all these events result from the death of massive stars, the electromagnetic luminosities of GRBs and XRFs exceed those of ordinary type Ibc supernovae by many orders of magnitude. The essential physical process that causes a dying star to produce a GRB or XRF, and not just a supernova, is still unknown. Here we report radio and X-ray observations of XRF 060218 (associated with supernova SN 2006aj), the second-nearest GRB identified until now. We show that this event is a hundred times less energetic but ten times more common than cosmological GRBs. Moreover, it is distinguished from ordinary type Ibc supernovae by the presence of 10(48) erg coupled to mildly relativistic ejecta, along with a central engine (an accretion-fed, rapidly rotating compact source) that produces X-rays for weeks after the explosion. This suggests that the production of relativistic ejecta is the key physical distinction between GRBs or XRFs and ordinary supernovae, while the nature of the central engine (black hole or magnetar) may distinguish typical bursts from low-luminosity, spherical events like XRF 060218.

8.
Nature ; 438(7070): 988-90, 2005 Dec 15.
Article in English | MEDLINE | ID: mdl-16355217

ABSTRACT

Despite a rich phenomenology, gamma-ray bursts (GRBs) are divided into two classes based on their duration and spectral hardness--the long-soft and the short-hard bursts. The discovery of afterglow emission from long GRBs was a watershed event, pinpointing their origin to star-forming galaxies, and hence the death of massive stars, and indicating an energy release of about 10(51) erg. While theoretical arguments suggest that short GRBs are produced in the coalescence of binary compact objects (neutron stars or black holes), the progenitors, energetics and environments of these events remain elusive despite recent localizations. Here we report the discovery of the first radio afterglow from the short burst GRB 050724, which unambiguously associates it with an elliptical galaxy at a redshift z = 0.257. We show that the burst is powered by the same relativistic fireball mechanism as long GRBs, with the ejecta possibly collimated in jets, but that the total energy release is 10-1,000 times smaller. More importantly, the nature of the host galaxy demonstrates that short GRBs arise from an old (> 1 Gyr) stellar population, strengthening earlier suggestions and providing support for coalescing compact object binaries as the progenitors.

9.
Nature ; 437(7060): 845-50, 2005 Oct 06.
Article in English | MEDLINE | ID: mdl-16208362

ABSTRACT

The final chapter in the long-standing mystery of the gamma-ray bursts (GRBs) centres on the origin of the short-hard class of bursts, which are suspected on theoretical grounds to result from the coalescence of neutron-star or black-hole binary systems. Numerous searches for the afterglows of short-hard bursts have been made, galvanized by the revolution in our understanding of long-duration GRBs that followed the discovery in 1997 of their broadband (X-ray, optical and radio) afterglow emission. Here we present the discovery of the X-ray afterglow of a short-hard burst, GRB 050709, whose accurate position allows us to associate it unambiguously with a star-forming galaxy at redshift z = 0.160, and whose optical lightcurve definitively excludes a supernova association. Together with results from three other recent short-hard bursts, this suggests that short-hard bursts release much less energy than the long-duration GRBs. Models requiring young stellar populations, such as magnetars and collapsars, are ruled out, while coalescing degenerate binaries remain the most promising progenitor candidates.

10.
Phys Rev Lett ; 84(16): 3527-30, 2000 Apr 17.
Article in English | MEDLINE | ID: mdl-11019137

ABSTRACT

The apparent lack of suitable astrophysical sources for the observed highest energy cosmic rays within approximately 20 Mpc is the "Greisen-Zatsepin-Kuzmin (GZK) paradox." We constrain representative models of the extragalactic magnetic field structure by Faraday rotation measurements; limits are at the microG level rather than the nG level usually assumed. In such fields, even the highest energy cosmic rays experience large deflections. This allows nearby active galactic nuclei (possibly quiet today) or gamma ray bursts to be the source of ultrahigh energy cosmic rays without contradicting the GZK distance limit.


Subject(s)
Cosmic Radiation , Models, Theoretical , Astronomy/methods , Physics/methods
11.
Astrophys J ; 534(2): L163-L166, 2000 May 10.
Article in English | MEDLINE | ID: mdl-10813673

ABSTRACT

We discuss the spectrum arising from synchrotron emission by fast cooling (FC) electrons, when fresh electrons are continually accelerated by a strong blast wave, into a power-law distribution of energies. The FC spectrum has so far been described by four power-law segments divided by three break frequencies nusa

12.
Phys Rev D Part Fields ; 53(6): 2908-2919, 1996 Mar 15.
Article in English | MEDLINE | ID: mdl-10020291
13.
Phys Rev Lett ; 73(21): 2805-2808, 1994 Nov 21.
Article in English | MEDLINE | ID: mdl-10057200
15.
Phys Rev D Part Fields ; 48(10): 4729-4734, 1993 Nov 15.
Article in English | MEDLINE | ID: mdl-10016127
16.
Phys Rev D Part Fields ; 43(12): R3785-R3788, 1991 Jun 15.
Article in English | MEDLINE | ID: mdl-10013384
18.
Phys Rev Lett ; 64(24): 2852-2855, 1990 Jun 11.
Article in English | MEDLINE | ID: mdl-10041829
19.
Phys Rev D Part Fields ; 40(10): 3263-3279, 1989 Nov 15.
Article in English | MEDLINE | ID: mdl-10011694
20.
Phys Rev D Part Fields ; 37(10): 2722-2731, 1988 May 15.
Article in English | MEDLINE | ID: mdl-9958551
SELECTION OF CITATIONS
SEARCH DETAIL
...