Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Genet Mol Res ; 7(3): 706-17, 2008 Aug 05.
Article in English | MEDLINE | ID: mdl-18752198

ABSTRACT

The Aspergillus genus belongs to a filamentous fungal group characterized by wide dispersion in the environment. Some species are associated with diseases, especially in immunocompromised patients, while others are of economical importance due to aflatoxin production or biotechnological applications. Its species identification is nowadays performed by traditional techniques combined with molecular markers, resulting in a higher efficiency of isolate characterization. In the present study, internal transcribed spacer, inter-simple sequence repeats (ISSR), and random amplified polymorphic DNA (RAPD) molecular markers were used, with the aim of genetically characterizing strains of Aspergillus flavus and strains of other species of the A. flavus group. High genetic diversity was revealed by RAPD and by ISSR, in which the use of the (GACA)4 primer yielded a higher diversity than with the (GTG)5 primer, although the latter showed a characteristic banding profile for each species. These data were used to create a similarity matrix for the construction of dendrograms by means of the UPGMA method. The ISSR and RAPD profiles showed that among the strains previously identificated as A. flavus, one should be A. oryzae, one A. parasiticus and two A. tamarii. On the other hand, a strain previously identified as A. parasiticus should be A. flavus. All these strains were retested by traditional methods and their new species identification was confirmed. These results strongly support the need for using molecular markers as an auxiliary tool in differentiating fungal species and strains.


Subject(s)
Aspergillus flavus/classification , Aspergillus flavus/genetics , Brazil , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Genetic Markers , Mycological Typing Techniques , Random Amplified Polymorphic DNA Technique
SELECTION OF CITATIONS
SEARCH DETAIL