Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Biol ; 221(Pt 16)2018 08 23.
Article in English | MEDLINE | ID: mdl-29903837

ABSTRACT

Surprisingly little information exists of the mechanics in the steps initializing the walk-to-run transition (WRT) in humans. Here, we assess how mechanical work of the limbs (vertical and horizontal) and the individual joints (ankle, knee and hip) are modulated as humans transition from a preferred constant walking velocity (vwalk) to a variety of running velocities (vrun; ranging from a sprint to a velocity slower than vwalk). WRTs to fast vrun values occur nearly exclusively through positive horizontal limb work, satisfying the goal of forward acceleration. Contrary to our hypothesis, however, positive mechanical work remains above that at vwalk even when decelerating. In these WRTs to slow running, positive mechanical work is remarkably high and is comprised nearly exclusively of vertical limb work. Vertical-to-horizontal work modulation may represent an optimization for achieving minimal and maximal vrun, respectively, while fulfilling an apparent necessity for energy input when initiating WRTs. Net work of the WRT steps was more evenly distributed across the ankle, knee and hip joints than expected. Absolute positive mechanical work exhibited a clearer modulation towards hip-based work at high accelerations (>3 m s-2), corroborating previous suggestions that the most proximal joints are preferentially recruited for locomotor tasks requiring high power and work production. In WRTs to very slow vrun values, high positive work is nevertheless done at the knee, indicating that modulation of joint work is not only dependent on the amount of work required but also the locomotor context.


Subject(s)
Joints/physiology , Leg , Running/physiology , Walking/physiology , Acceleration , Adult , Biomechanical Phenomena , Gait , Humans , Male
2.
PLoS One ; 11(4): e0152602, 2016.
Article in English | MEDLINE | ID: mdl-27054319

ABSTRACT

Elastic energy returned from passive-elastic structures of the lower limb is fundamental in lowering the mechanical demand on muscles during running. The purpose of this study was to investigate the two length-modulating mechanisms of the plantar fascia, namely medial longitudinal arch compression and metatarsophalangeal joint (MPJ) excursion, and to determine how these mechanisms modulate strain, and thus elastic energy storage/return of the plantar fascia during running. Eighteen runners (9 forefoot and 9 rearfoot strike) performed three treadmill running trials; unrestricted shod, shod with restricted arch compression (via an orthotic-style insert), and barefoot. Three-dimensional motion capture and ground reaction force data were used to calculate lower limb kinematics and kinetics including MPJ angles, moments, powers and work. Estimates of plantar fascia strain due to arch compression and MPJ excursion were derived using a geometric model of the arch and a subject-specific musculoskeletal model of the plantar fascia, respectively. The plantar fascia exhibited a typical elastic stretch-shortening cycle with the majority of strain generated via arch compression. This strategy was similar in fore- and rear-foot strike runners. Restricting arch compression, and hence the elastic-spring function of the arch, was not compensated for by an increase in MPJ-derived strain. In the second half of stance the plantar fascia was found to transfer energy between the MPJ (energy absorption) and the arch (energy production during recoil). This previously unreported energy transfer mechanism reduces the strain required by the plantar fascia in generating useful positive mechanical work at the arch during running.


Subject(s)
Biomechanical Phenomena , Fascia/physiology , Metatarsophalangeal Joint/physiology , Running/physiology , Adult , Foot/physiology , Foot Orthoses , Humans , Male , Models, Biological , Stress, Mechanical
3.
J Exp Biol ; 217(Pt 19): 3519-27, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25104752

ABSTRACT

Two commonly proposed mechanical explanations for the walk-to-run transition (WRT) include the prevention of muscular over-exertion (effort) and the minimization of peak musculoskeletal loads and thus injury risk. The purpose of this study was to address these hypotheses at a joint level by analysing the effect of speed on discrete lower-limb joint kinetic parameters in humans across a wide range of walking and running speeds including walking above and running below the WRT speed. Joint work, peak instantaneous joint power, and peak joint moments in the sagittal and frontal plane of the ankle, knee and hip from eight participants were collected for 10 walking speeds (30-120% of their WRT) and 10 running speeds (80-170% of their WRT) on a force plate instrumented treadmill. Of the parameters analysed, three satisfied our statistical criteria of the 'effort-load' hypothesis of the WRT. Mechanical parameters that provide an acute signal (peak moment and peak power) were more strongly associated with the gait transition than parameters that reflect the mechanical function across a portion of the stride. We found that both the ankle (peak instantaneous joint power during swing) and hip mechanics (peak instantaneous joint power and peak joint moments in stance) can influence the transition from walking to running in human locomotion and may represent a cascade of mechanical events beginning at the ankle and leading to an unfavourable compensation at the hip. Both the ankle and hip mechanisms may contribute to gait transition by lowering the muscular effort of running compared with walking at the WRT speed. Although few of the examined joint variables satisfied our hypothesis of the WRT, most showed a general marked increase when switching from walking to running across all speeds where both walking and running are possible, highlighting the fundamental differences in the mechanics of walking and running. While not eliciting the WRT per se, these variables may initiate the transition between stable walking and running patterns. Those variables that were invariant of gait were predominantly found in the swing phase.


Subject(s)
Gait/physiology , Running/physiology , Walking/physiology , Acceleration , Adult , Biomechanical Phenomena , Female , Humans , Joints/physiology , Male , Muscle, Skeletal/physiology , Video Recording
4.
J Exp Biol ; 215(Pt 20): 3539-51, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22771749

ABSTRACT

The region over which skeletal muscles operate on their force-length (F-L) relationship is fundamental to the mechanics, control and economy of movement. Yet surprisingly little experimental data exist on normalized length operating ranges of muscle during human gait, or how they are modulated when mechanical demands (such as force output) change. Here we explored the soleus muscle (SOL) operating lengths experimentally in a group of healthy young adults by combining subject-specific F-L relationships with in vivo muscle imaging during gait. We tested whether modulation of operating lengths occurred between walking and running, two gaits that require different levels of force production and different muscle-tendon mechanics, and examined the relationship between optimal fascicle lengths (L(0)) and normalized operating lengths during these gaits. We found that the mean active muscle lengths reside predominantly on the ascending limbs of the F-L relationship in both gaits (walk, 0.70-0.94 L(0); run, 0.65-0.99 L(0)). Furthermore, the mean normalized muscle length at the time of the peak activation of the muscle was the same between the two gaits (0.88 L(0)). The active operating lengths were conserved, despite a fundamentally different fascicle strain pattern between walking (stretch-shorten cycle) and running (near continuous shortening). Taken together, these findings indicate that the SOL operating length is highly conserved, despite gait-dependent differences in muscle-tendon dynamics, and appear to be preferentially selected for stable force production compared with optimal force output (although length-dependent force capacity is high when maximal forces are expected to occur). Individuals with shorter L(0) undergo smaller absolute muscle excursions (P<0.05) so that the normalized length changes during walking and running remain independent of L(0). The correlation between L(0) and absolute length change was not explained on the basis of muscle moment arms or joint excursion, suggesting that regulation of muscle strain may occur via tendon stretch.


Subject(s)
Muscle, Skeletal/physiology , Running/physiology , Stress, Mechanical , Tendons/physiology , Walking/physiology , Adult , Biomechanical Phenomena , Gait/physiology , Humans , Male , Muscle Contraction , Torque , Torsion, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...