Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Biosens Bioelectron ; 258: 116291, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38735080

ABSTRACT

Depression is one of the most common mental disorders and is mainly characterized by low mood or lack of interest and pleasure. It can be accompanied by varying degrees of cognitive and behavioral changes and may lead to suicide risk in severe cases. Due to the subjectivity of diagnostic methods and the complexity of patients' conditions, the diagnosis of major depressive disorder (MDD) has always been a difficult problem in psychiatry. With the discovery of more diagnostic biomarkers associated with MDD in recent years, especially emerging non-coding RNAs (ncRNAs), it is possible to quantify the condition of patients with mental illness based on biomarker levels. Point-of-care biosensors have emerged due to their advantages of convenient sampling, rapid detection, miniaturization, and portability. After summarizing the pathogenesis of MDD, representative biomarkers, including proteins, hormones, and RNAs, are discussed. Furthermore, we analyzed recent advances in biosensors for detecting various types of biomarkers of MDD, highlighting representative electrochemical sensors. Future trends in terms of new biomarkers, new sample processing methods, and new detection modalities are expected to provide a complete reference for psychiatrists and biomedical engineers.


Subject(s)
Biomarkers , Biosensing Techniques , Depressive Disorder, Major , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Humans , Biomarkers/analysis , Depressive Disorder, Major/diagnosis , Depressive Disorder, Major/genetics , Point-of-Care Systems , Electrochemical Techniques/methods
2.
Biosens Bioelectron ; 255: 116090, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38569250

ABSTRACT

Cardiovascular diseases (CVDs), especially chronic heart failure, threaten many patients' lives worldwide. Because of its slow course and complex causes, its clinical screening, diagnosis, and prognosis are essential challenges. Clinical biomarkers and biosensor technologies can rapidly screen and diagnose. Multiple types of biomarkers are employed for screening purposes, precise diagnosis, and treatment follow-up. This article provides an up-to-date overview of the biomarkers associated with the six main heart failure etiology pathways. Plasma natriuretic peptides (BNP and NT-proBNP) and cardiac troponins (cTnT, cTnl) are still analyzed as gold-standard markers for heart failure. Other complementary biomarkers include growth differentiation factor 15 (GDF-15), circulating Galactose Lectin 3 (Gal-3), soluble interleukin (sST2), C-reactive protein (CRP), and tumor necrosis factor-alpha (TNF-α). For these biomarkers, the electrochemical biosensors have exhibited sufficient sensitivity, detection limit, and specificity. This review systematically summarizes the latest molecular biomarkers and sensors for heart failure, which will provide comprehensive and cutting-edge authoritative scientific information for biomedical and electronic-sensing researchers in the field of heart failure, as well as patients. In addition, our proposed future outlook may provide new research ideas for researchers.


Subject(s)
Biosensing Techniques , Heart Failure , Humans , Biomarkers , Prognosis , Natriuretic Peptide, Brain , Heart Failure/diagnosis , C-Reactive Protein/metabolism , Peptide Fragments
3.
J Pharm Biomed Anal ; 241: 115971, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38266454

ABSTRACT

Lipids play key roles in the body, influencing cellular regulation, function, and signalling. Tolcapone, a potent catechol-O-methyltransferase (COMT) inhibitor described to enhance cognitive performance in healthy subjects, was previously shown to impact fatty acid ß-oxidation and oxidative phosphorylation. However, its impact on the brain lipidome remains unexplored. Hence, this study aimed to assess how tolcapone affects the lipidome of the rat pre-frontal cortex (PFC), a region of the brain highly relevant to tolcapone therapeutic effect, while evaluating its influence on operant behaviour. Tolcapone at 20 mg/kg was chronically administered to Wistar rats during a behavioural task and an untargeted liquid chromatography high-resolution mass spectrometry (LC-HR/MS) approach was employed to profile lipid species. The untargeted analysis identified 7227 features, of which only 33% underwent statistical analysis following data pre-processing. The results revealed an improved cognitive performance and a lipidome remodelling promoted by tolcapone. The lipidomic analysis showed 32 differentially expressed lipid species in tolcapone-treated animals (FC ≥ 1.2, p-value ≤ 0.1), and among these several triacylglycerols, cardiolipins and N-acylethanolamine (NAE 16:2) were found upregulated whereas fatty acids, hexosylceramides, and several phospholipids including phosphatidylcholines and phosphatidylethanolamines were downregulated. These preliminary findings shed light on tolcapone impact on lipid pathways within the brain. Although tolcapone improved cognitive performance and literature suggests the significance of lipids in cognition, this study did not conclusively establish that lipids directly drove or contributed to this outcome. Nevertheless, it underscores the importance of lipid modulation and encourages further exploration of tolcapone-associated mechanisms in the central nervous system (CNS).


Subject(s)
Catechol O-Methyltransferase , Lipidomics , Humans , Rats , Animals , Tolcapone/metabolism , Tolcapone/pharmacology , Benzophenones , Nitrophenols , Enzyme Inhibitors/pharmacology , Rats, Wistar , Dopamine/metabolism , Catechol O-Methyltransferase Inhibitors/pharmacology , Brain/metabolism , Lipids
4.
Nat Commun ; 14(1): 3379, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37291153

ABSTRACT

In plant communities, diversity often increases productivity and functioning, but the specific underlying drivers are difficult to identify. Most ecological theories attribute positive diversity effects to complementary niches occupied by different species or genotypes. However, the specific nature of niche complementarity often remains unclear, including how it is expressed in terms of trait differences between plants. Here, we use a gene-centred approach to study positive diversity effects in mixtures of natural Arabidopsis thaliana genotypes. Using two orthogonal genetic mapping approaches, we find that between-plant allelic differences at the AtSUC8 locus are strongly associated with mixture overyielding. AtSUC8 encodes a proton-sucrose symporter and is expressed in root tissues. Genetic variation in AtSUC8 affects the biochemical activities of protein variants and natural variation at this locus is associated with different sensitivities of root growth to changes in substrate pH. We thus speculate that - in the particular case studied here - evolutionary divergence along an edaphic gradient resulted in the niche complementarity between genotypes that now drives overyielding in mixtures. Identifying genes important for ecosystem functioning may ultimately allow linking ecological processes to evolutionary drivers, help identify traits underlying positive diversity effects, and facilitate the development of high-performance crop variety mixtures.


Subject(s)
Biodiversity , Ecosystem , Plants , Genotype , Phenotype
5.
Adv Sci (Weinh) ; 10(6): e2205429, 2023 02.
Article in English | MEDLINE | ID: mdl-36585368

ABSTRACT

The focus on precise medicine enhances the need for timely diagnosis and frequent monitoring of chronic diseases. Moreover, the recent pandemic of severe acute respiratory syndrome coronavirus 2 poses a great demand for rapid detection and surveillance of viral infections. The detection of protein biomarkers and antigens in the saliva allows rapid identification of diseases or disease changes in scenarios where and when the test response at the point of care is mandated. While traditional methods of protein testing fail to provide the desired fast results, electrochemical biosensors based on nanomaterials hold perfect characteristics for the detection of biomarkers in point-of-care settings. The recent advances in electrochemical sensors for salivary protein detection are critically reviewed in this work, with emphasis on the role of nanomaterials to boost the biosensor analytical performance and increase the reliability of the test in human saliva samples. Furthermore, this work identifies the critical factors for further modernization of the nanomaterial-based electrochemical sensors, envisaging the development and implementation of next-generation sample-in-answer-out systems.


Subject(s)
Biosensing Techniques , COVID-19 , Nanostructures , Humans , Saliva , Reproducibility of Results , COVID-19/diagnosis , Electrochemical Techniques , Biomarkers , Biosensing Techniques/methods
6.
PLoS Biol ; 20(11): e3001842, 2022 11.
Article in English | MEDLINE | ID: mdl-36445870

ABSTRACT

Historic yield advances in the major crops have, to a large extent, been achieved by selection for improved productivity of groups of plant individuals such as high-density stands. Research suggests that such improved group productivity depends on "cooperative" traits (e.g., erect leaves, short stems) that-while beneficial to the group-decrease individual fitness under competition. This poses a problem for some traditional breeding approaches, especially when selection occurs at the level of individuals, because "selfish" traits will be selected for and reduce yield in high-density monocultures. One approach, therefore, has been to select individuals based on ideotypes with traits expected to promote group productivity. However, this approach is limited to architectural and physiological traits whose effects on growth and competition are relatively easy to anticipate. Here, we developed a general and simple method for the discovery of alleles promoting cooperation in plant stands. Our method is based on the game-theoretical premise that alleles increasing cooperation benefit the monoculture group but are disadvantageous to the individual when facing noncooperative neighbors. Testing the approach using the model plant Arabidopsis thaliana, we found a major effect locus where the rarer allele was associated with increased cooperation and productivity in high-density stands. The allele likely affects a pleiotropic gene, since we find that it is also associated with reduced root competition but higher resistance against disease. Thus, even though cooperation is considered evolutionarily unstable except under special circumstances, conflicting selective forces acting on a pleiotropic gene might maintain latent genetic variation for cooperation in nature. Such variation, once identified in a crop, could rapidly be leveraged in modern breeding programs and provide efficient routes to increase yields.


Subject(s)
Arabidopsis , Plant Breeding , Humans , Crops, Agricultural , Phenotype , Alleles , Arabidopsis/genetics , Genetic Variation
7.
Trends Pharmacol Sci ; 43(10): 806-819, 2022 10.
Article in English | MEDLINE | ID: mdl-35851157

ABSTRACT

Salt-inducible kinases (SIKs) are serine/threonine kinases belonging to the AMP-activated protein kinase (AMPK) family. Accumulating evidence indicates that SIKs phosphorylate multiple targets, including histone deacetylases (HDACs) and cAMP response element-binding protein (CREB)-regulated transcriptional coactivators (CRTCs), to coordinate signaling pathways implicated in metabolism, cell growth, proliferation, apoptosis, and inflammation. These pathways downstream of SIKs are altered not only in pathologies like cancer, systemic hypertension, and inflammatory diseases, but also in pulmonary arterial hypertension (PAH), a multifactorial disease characterized by pulmonary vasoconstriction, inflammation and remodeling of pulmonary arteries owing to endothelial dysfunction and aberrant proliferation of smooth muscle cells (SMCs). In this opinion article, we present evidence of SIKs as modulators of key signaling pathways involved in PAH pathophysiology and discuss the potential of SIKs as therapeutic targets for PAH, emphasizing the need for deeper molecular insights on PAH.


Subject(s)
Pulmonary Arterial Hypertension , AMP-Activated Protein Kinases/metabolism , Cell Proliferation , Humans , Inflammation , Protein Serine-Threonine Kinases , Pulmonary Arterial Hypertension/drug therapy , Signal Transduction
8.
Dev Cell ; 56(13): 1945-1960.e7, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34192526

ABSTRACT

Establishing the embryonic body plan of multicellular organisms relies on precisely orchestrated cell divisions coupled with pattern formation, which, in animals, are regulated by Polycomb group (PcG) proteins. The conserved Polycomb Repressive Complex 2 (PRC2) mediates H3K27 trimethylation and comes in different flavors in Arabidopsis. The PRC2 catalytic subunit MEDEA is required for seed development; however, a role for PRC2 in embryonic patterning has been dismissed. Here, we demonstrate that embryos derived from medea eggs abort because MEDEA is required for patterning and cell lineage determination in the early embryo. Similar to PcG proteins in mammals, MEDEA regulates embryonic patterning and growth by controlling cell-cycle progression through repression of CYCD1;1, which encodes a core cell-cycle component. Thus, Arabidopsis embryogenesis is epigenetically regulated by PcG proteins, revealing that the PRC2-dependent modulation of cell-cycle progression was independently recruited to control embryonic cell proliferation and patterning in animals and plants.


Subject(s)
Arabidopsis Proteins/genetics , Cyclin D3/genetics , Plant Development/genetics , Polycomb-Group Proteins/genetics , Arabidopsis/genetics , Arabidopsis/growth & development , Body Patterning/genetics , Cell Proliferation/genetics , Flowers/genetics , Flowers/growth & development , Gene Expression Regulation, Plant/genetics , Histones/genetics , Methylation , Polycomb Repressive Complex 2/genetics , Seeds/genetics , Seeds/growth & development
9.
Elife ; 102021 05 07.
Article in English | MEDLINE | ID: mdl-33960300

ABSTRACT

In multicellular organisms, sexual reproduction requires the separation of the germline from the soma. In flowering plants, the female germline precursor differentiates as a single spore mother cell (SMC) as the ovule primordium forms. Here, we explored how organ growth contributes to SMC differentiation. We generated 92 annotated 3D images at cellular resolution in Arabidopsis. We identified the spatio-temporal pattern of cell division that acts in a domain-specific manner as the primordium forms. Tissue growth models uncovered plausible morphogenetic principles involving a spatially confined growth signal, differential mechanical properties, and cell growth anisotropy. Our analysis revealed that SMC characteristics first arise in more than one cell but SMC fate becomes progressively restricted to a single cell during organ growth. Altered primordium geometry coincided with a delay in the fate restriction process in katanin mutants. Altogether, our study suggests that tissue geometry channels reproductive cell fate in the Arabidopsis ovule primordium.


Subject(s)
Arabidopsis/genetics , Arabidopsis/physiology , Cell Division , Ovule/physiology , Arabidopsis/growth & development , Cell Cycle , Cell Differentiation , Cell Proliferation , Mutation , Ovule/genetics
10.
Eur J Pharmacol ; 904: 174153, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-33989615

ABSTRACT

Type 1 salt-inducible kinases (SIK1) has been shown to act as a mediator during the cellular adaptation to variations in intracellular sodium in a variety of cell types. Type 2 SIK (SIK2) modulates various biological functions and acts as a signal transmitter in various pathways. To evaluate the role of both SIK isoforms in renal and intestinal Na+,K+-ATPase (NKA) activity, we made use of constitutive sik1-/- (SIK1-KO), sik2-/- (SIK2-KO), double sik1-/-sik2-/- (double SIK1*2-KO) knockout and wild-type (WT) mice challenged to a standard (0.3% NaCl) or chronic high-salt (HS, 8% NaCl) diet intake for 48 h or 12 weeks. Long-term HS intake in WT was accompanied by 2-fold increase in jejunal NKA activity and slight (~30% reduction) decreases in NKA in the ileum and cecum; none of these changes was accompanied by changes in the expression of α1-NKA. The ablation of SIK1 and SIK2 prevented the marked increase in jejunal NKA activity following the long-term HS intake. The ablation of SIK1 and SIK2 in mice on a long-term HS intake impacted differently in the ileum and cecum. The most interesting finding is that in SIK2-KO mice marked reductions in NKA activity were observed in the ileum and cecum when compared to WT mice, both on normal and long-term HS intake. In summary, SIK1 or SIK2 ablation on chronic high-salt intake is accompanied by modulation of NKA along the intestinal tract, which differ from those after an acute high-salt intake, and this may represent an absorptive compensatory mechanism to keep electrolyte homeostasis.


Subject(s)
Gastrointestinal Tract/metabolism , Kidney/metabolism , Protein Serine-Threonine Kinases/physiology , Sodium Chloride, Dietary/pharmacology , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Arterial Pressure/drug effects , Behavior, Animal/drug effects , Gastrointestinal Tract/drug effects , Gene Knockout Techniques , Heart Rate/drug effects , Kidney/drug effects , Mice, Inbred C57BL , Mice, Knockout , Protein Serine-Threonine Kinases/genetics , Sodium Chloride, Dietary/administration & dosage , Time Factors
11.
Clin Exp Hypertens ; 43(5): 428-435, 2021 Jul 04.
Article in English | MEDLINE | ID: mdl-33688765

ABSTRACT

Salt-inducible kinases (SIKs) represent a subfamily of AMPK family kinases. SIK1 has been shown to act as a mediator during the cellular adaptation to variations in intracellular sodium in a variety of cell types. SIK2, as an isoform of the SIK family, modulates various biological functions and acts as a signal transmitter in various pathways. To evaluate the role of both SIK1 and SIK2 isoforms in blood pressure (BP), body fluid regulation and cardiac hypertrophy development, we made use of constitutive sik1-/- (SIK1-KO), sik2-/- (SIK2-KO), double sik1-/-sik2-/- (double SIK1*2-KO) knockout and wild-type (WT) mice challenged to a standard (0.3% NaCl) or chronic high-salt (HS, 8% NaCl) diet intake for 12 weeks.Mice, under a standard diet intake, had similar and normal BP. On a chronic HS intake, SIK1-KO and double SIK1*2-KO mice showed increased BP, but not WT and SIK2-KO mice. A chronic HS intake led to the development of cardiac left ventricle hypertrophy (LVH) in normotensive WT and hypertensive SIK1-KO mice, but not in SIK2-KO mice. Double SIK1*2-KO mice under standard diet intake show normal BP but an increased LV mass. Remarkably, in response to a dietary stress condition, there is an increase in BP but LVH remained unchanged in double SIK1*2-KO mice.In summary, SIK1 isoform is required for maintaining normal BP in response to HS intake. LVH triggered by HS intake requires SIK2 isoform and is independent of high BP.


Subject(s)
Cardiomegaly/physiopathology , Hypertension/physiopathology , Protein Serine-Threonine Kinases/metabolism , Animals , Blood Glucose/metabolism , Blood Pressure , Body Weight , Cardiomegaly/blood , Hypertension/blood , Kidney Function Tests , Lipids/blood , Male , Mice, Inbred C57BL , Mice, Knockout , Organ Size , Protein Isoforms/metabolism , Sodium Chloride, Dietary
12.
BMJ Open ; 11(2): e042865, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33568374

ABSTRACT

OBJECTIVE: To understand the most significant aspects of care experienced by people in opioid substitution treatment (OST) in primary care settings. DESIGN: Semistructured individual interviews were conducted, following the critical incidents technique. Interview transcripts were analysed following a thematic analysis approach. PARTICIPANTS: Adults aged 18 years or older, receiving OST in UK-based primary care services. RESULTS: Twenty-four people in OST were interviewed between January and March 2019. Participants reported several aspects which were significant for their treatment, when engaging with the primary care service. These were grouped into 10 major themes: (1) humanised care; (2) individual bond/connection with the professional; (3) professionals' experience and knowledge; (4) having holistic care; (5) familiarity; (6) professionals' commitment and availability to help; (7) anonymity; (8) location; (9) collaborative teamwork; and (10) flexibility and changes around the treatment plan. CONCLUSIONS: This study included first-hand accounts of people who use drugs about what supports them in their recovery journey. The key lessons learnt from our findings indicate that people who use drugs value receiving treatment in humanised and destigmatised environments. We also learnt that a good relationship with primary care professionals supports their recovery journey, and that treatment plans should be flexible, tailor-made and collaboratively designed with patients.


Subject(s)
Opiate Substitution Treatment , Pharmaceutical Preparations , Adolescent , Adult , Humans , Primary Health Care , Qualitative Research
13.
Crit Rev Food Sci Nutr ; 61(11): 1852-1876, 2021.
Article in English | MEDLINE | ID: mdl-32539431

ABSTRACT

The aquaculture industry has advanced toward sustainable recirculating systems, in where parameters of food quality are strictly monitored. Despite that, as in the case of conventional aquaculture practices, the recirculating systems also suffer threats from Aeromonas spp., Vibrio spp., Streptococcus spp., among other foodborne pathogens infecting farmed fish. The aquaculture pathogens are routinely detected by conventional PCR methods or antibody-based tests, with the detection protocols confined to laboratory use. Emerging assay technologies and biosensors recently reported in the literature open new opportunities to the development of sensitive, specific, and portable analytical devices to use in the field. Techniques of DNA/RNA analysis, immunoassays and other nanomolecular technologies have been facing important advances in response time, sensitivity, and enhanced power of discrimination among and within species. Moreover, the recent developments of electrochemical and optical signal transduction have facilitated the incorporation of the innovative assays to practical miniaturized devices. In this work, it is provided a critical review over foodborne pathogen detection by existing and promising methods and biosensors applied to fish samples and extended to other food matrices. While isothermal DNA/RNA amplification methods can be highlighted among the assay methods for their promising analytical performance and suitability for point-of-care testing, the electrochemical transduction provides a way to achieve cost-effective biosensors amenable to use in the aquaculture field. The adoption of new methods and biosensors would constitute a step forward in securing sustainable aquaculture systems.


Subject(s)
Biosensing Techniques , Animals , Aquaculture , Fishes , Immunoassay , Polymerase Chain Reaction
14.
Br J Pharmacol ; 177(9): 2123-2142, 2020 05.
Article in English | MEDLINE | ID: mdl-31901141

ABSTRACT

BACKGROUND AND PURPOSE: In 2016, one person died and four others had mild-to-severe neurological symptoms during a phase I trial of the fatty acid amide hydrolase (FAAH) inhibitor BIA 10-2474. EXPERIMENTAL APPROACH: Pharmacodynamic and pharmacokinetic studies were performed with BIA 10-2474, PF-04457845 and JNJ-42165279 using mice, rats and human FAAH expressed in COS cells. Selectivity was evaluated by activity-based protein profiling (APBB) in rats. BIA 10-2474 effect in stroke-prone spontaneously hypertensive rats (SHRSP) was investigated. KEY RESULTS: BIA 10-2474 was 10-fold less potent than PF-04457845 in inhibiting human FAAH in situ but inhibited mouse brain and liver FAAH with ED50 values of 13.5 and 6.2 µg·kg-1 , respectively. Plasma and brain BIA 10-2474 levels were consistent with in situ potency and neither BIA 10-2474 nor its metabolites accumulated following repeat administration. FAAH and α/ß-hydrolase domain containing 6 were the primary targets of BIA 10-2474 and, at higher exposure levels, ABHD11, PNPLA6, PLA2G15, PLA2G6 and androgen-induced protein 1. At 100 mg·kg-1 for 28 days, the level of several lipid species containing arachidonic acid increased. Daily treatment of SHRSP with BIA 10-2474 did not affect mortality rate or increased the incidence of haemorrhage or oedema in surviving animals. CONCLUSIONS AND IMPLICATIONS: BIA 10-2474 potently inhibits FAAH in vivo, similarly to PF-04457845 and interacts with a number of lipid processing enzymes, some previously identified in human cells as off-targets particularly at high levels of exposure. These interactions occurred at doses used in toxicology studies, but the implication of these off-targets in the clinical trial accident remains unclear.


Subject(s)
Amidohydrolases , Pyridines , Animals , Cyclic N-Oxides , Endocannabinoids , Enzyme Inhibitors/pharmacology , Group VI Phospholipases A2 , Mice , Pyridines/pharmacology , Rats
15.
Front Psychol ; 11: 588877, 2020.
Article in English | MEDLINE | ID: mdl-33510672

ABSTRACT

Psychodrama is an effective psychotherapeutic model but interventions with adolescents require age-tailored techniques that maximize engagement and facilitate communication processes. This study describes a novel adaptation of a therapeutic mask technique to psychodrama with adolescents. Over the course of eight group sessions of psychodrama, five adolescents (16 to 18 years-old) created their own mask and explored its therapeutic use. Their experiences were captured at the end of each session with the Helpful Aspects of Therapy (HAT) form, and at the end of the study with the Clinical Change Interview (CCI). Awareness/insight/self-understanding, empowerment and relief were the most significant aspects experienced by the adolescents, along with perceived increase of calmness and world connection, satisfaction in interpersonal communication and better emotional expression and regulation. The mask technique was experienced as a playful and engaging task that facilitated insight and interpersonal communication. Findings provide preliminary evidence on the clinical utility of mask-based psychodrama with adolescents.

16.
Ann Biomed Eng ; 48(2): 644-654, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31624980

ABSTRACT

This work presents a method to unequivocally detect urine sample tampering in cases where integrity of the sample needs to be verified prior to urinalysis. The technique involves the detection of distinct patterns of a triplex short tandem repeats system in DNA extracted from human urine. The analysis is realized with single-dye fluorescence detection and using a regular smartphone camera. The experimental results had demonstrated the efficacy of the analytical approach to obtaining distinct profiles of amplicons in urine from different sample providers. Reproducibility tests with fresh and stored urine have revealed a maximum variation in the profiles within an interval of 5 to 9%. Cases of urine sample tampering via mixture were simulated in the study, and the experiments have identified patterns of mixed genotypes from dual mixtures of urine samples. Moreover, sample adulteration by mixing a non-human fluid with urine in a volume ratio over 25% can be detected. The low cost of the approach is accompanied by the compatibility of the technique to use with different DNA sample preparation protocols and PCR instrumentation. Furthermore, the possibility of realizing the method in an integrated microchip system open great perspectives to conducting sample integrity tests at the site of urine sample reception and/or at resource-limited settings.


Subject(s)
DNA Fingerprinting , DNA/urine , Fluorescence , Urinalysis , Adult , Female , Humans , Male , Reproducibility of Results
17.
Biosens Bioelectron ; 142: 111453, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31295711

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death nowadays, and its underdiagnosis is still a great challenge. More effective diagnosis method is in urgent need since the traditional spirometry has many limitations in the practical application. The electrochemical (EC) detection methods have their unique advantages of high accuracy, short response time and easy integration of the system. In this review, recent works on the EC methods for COPD biomarkers including interleukin 6 (IL-6), interleukin 8 (IL-8) and C-reactive protein (CRP) are summarized. Five types of EC methods are highlighted in this study, as enzyme-labelled immunosensors, nanoparticle-labelled immunosensors, capacitive or impedimetric immunosensors, magnetoimmunosensors, and field effect transistor (FET) immunosensors. To date, EC immunosensors have been exhibiting high analytical performance with a detection limit that can achieve several pg/mL or even lower. The simplicity of EC immunosensors makes them a perfect solution for a future point-of-care device to use in settings for COPD diagnosis and follow-up. Nevertheless, more efforts need to be paid on the simultaneous detection of multiple biomarkers, a demand for the clinical diagnosis, and processes of assay simplification towards achieving one-step detection.


Subject(s)
Biosensing Techniques/methods , Electrochemical Techniques/methods , Pulmonary Disease, Chronic Obstructive/diagnosis , Animals , Biomarkers/analysis , Biomarkers/blood , Biosensing Techniques/instrumentation , C-Reactive Protein/analysis , Electrochemical Techniques/instrumentation , Equipment Design , Humans , Immunoassay/instrumentation , Immunoassay/methods , Interleukin-6/analysis , Interleukin-6/blood , Interleukin-8/analysis , Interleukin-8/blood , Point-of-Care Systems , Pulmonary Disease, Chronic Obstructive/blood , Saliva/chemistry
18.
Analyst ; 144(14): 4342-4350, 2019 Jul 21.
Article in English | MEDLINE | ID: mdl-31192320

ABSTRACT

A novel fluorimetric sensor for highly sensitive nitrite detection on the site is presented in this study. The proposed on-chip approach comprises the use of integrated polymer photodetectors to detect light from fluorescence reactions with a diaminofluorescein probe. The detectors were prepared with a heterostructured nanofilm of polythieno[3,4-b]thiophene/benzodithiophene and (6,6)-phenyl-C71-butyric-acid methyl-ester as a photoactive layer. Prior to fluorimetric detection, the quality of the spin-coated photoactive layer was characterized via nano-morphology and current-density measurements. Nitrite assays were conducted on a poly(methyl methacrylate) microchannel chip, to which polythienothiophene-C71 based detectors were aligned. Results of signal-to-noise ratio determination have indicated a detection limit below 0.55 µM, lower than the 0.1 mg L-1 maximum limit of operation in recirculating aquaculture systems for farming Atlantic salmon Salmo salar. An increase of the nitrite concentration to toxic levels may therefore be possible to detect. The fluorimetric sensor exhibited good linearity over three orders of magnitude and acceptable detection reproducibility, which confirmed its analytical value. Further tests revealed great promise of the integrated biosensor device for detecting nitrite in aquaculture-relevant samples with high precision. The approach reported hereby may provide impetus to in situ analytical tools for monitoring water quality at aquaculture facilities, the food industries or water monitoring stations.

19.
Respir Res ; 20(1): 89, 2019 May 14.
Article in English | MEDLINE | ID: mdl-31088560

ABSTRACT

BACKGROUND: The burden of symptoms and risk of exacerbations are the main drivers of the overall assessment of the Chronic Obstructive Pulmonary Disease (COPD) and the adequate treatment approaches per current Global Initiative for Chronic Obstructive Lung Disease (GOLD). Physical activity has emerged as both functional outcome and non-pharmacological intervention in COPD patients, despite the lack of standardized measures or guidelines in clinical practice. This study aimed to explore in more depth the 24-h respiratory symptoms, the physical activity level (PAL) and the relationship between these two determinants in stable COPD patients. METHODS: This was a multinational, multicenter, observational, cross-sectional study conducted in ten European countries and Israel. Dedicated questionnaires for each part of the day (morning, daytime, night) were used to assess respiratory symptoms. PAL was evaluated with self- and interview-reported tools [EVS (exercise as vital sign) and YPAS (Yale Physical Activity Survey)], and physician's judgement. Patients were stratified in ABCD groups by 2013 and 2017 GOLD editions using the questionnaires currently recommended: modified Medical Research Council dyspnea scale and COPD Assessment Test. RESULTS: The study enrolled 2190 patients (mean age: 66.9 years; male: 70.0%; mean % predicted FEV1: 52.6; GOLD groups II-III: 84.5%; any COPD treatment: 98.9%). Most patients (> 90%) reported symptoms in any part of the 24-h day, irrespective of COPD severity. PAL evaluations showed discordant results between patients and physicians: 32.9% of patients considered themselves completely inactive, while physicians judged 11.9% patients as inactive. By YPAS, the overall study population spent an average of 21.0 h/week performing physical activity, and 68.4% of patients were identified as sedentary. In any GOLD ABCD group, the percentage of inactive patients was high. Our study found negative, weak correlations between respiratory symptoms and self-reported PAL (p < 0.001). CONCLUSIONS: Despite regular treatment, the majority of stable COPD patients with moderate to severe disease experienced daily variable symptoms. Physical activity level was low in this COPD cohort, and yet overestimated by physicians. With evidence indicating the negative consequences of inactivity, its adequate screening, a more active promotion and regular assessment of physical activity are urgently needed in COPD patients for better outcomes. TRIAL REGISTRATION: NCT03031769 , retrospectively registered, 23 Jan 2017.


Subject(s)
Exercise/physiology , Internationality , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/epidemiology , Sedentary Behavior , Self Report/standards , Adult , Aged , Cross-Sectional Studies , Europe/epidemiology , Female , Humans , Israel/epidemiology , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive/physiopathology
20.
Hypertens Res ; 42(8): 1114-1124, 2019 08.
Article in English | MEDLINE | ID: mdl-30894696

ABSTRACT

Loss of salt-inducible kinase 1 (SIK1) triggers an increase in blood pressure (BP) upon a chronic high-salt intake in mice. Here, we further addressed the possible early mechanisms that may relate to the observed rise in BP in mice lacking SIK1. SIK1 knockout (sik1-/-) and wild-type (sik1+/+) littermate mice were challenged with either a high-salt (8% NaCl) or control (0.3% NaCl) diet for 7 days. Systolic BP was significantly increased in sik1-/- mice after 7 days of high-salt diet as compared with sik1+/+ mice and to sik1-/- counterparts on a control diet. The renin-angiotensin-aldosterone system and the sympathetic nervous system were assayed to investigate possible causes for the increase in BP in sik1-/- mice fed a 7-day high-salt diet. Although no differences in serum renin and angiotensin II levels were observed, a reduction in aldosterone serum levels was observed in mice fed a high-salt diet. Urinary L-DOPA and noradrenaline levels were significantly increased in sik1-/- mice fed a high-salt diet as compared with sik1-/- mice on a control diet. Similarly, the activity of dopamine ß-hydroxylase (DßH), the enzyme that converts dopamine to noradrenaline, was significantly increased in the adrenal glands of sik1-/- mice on a high-salt intake compared with sik1+/+ and sik1-/- mice on a control diet. Treatment with etamicastat (50 mg/kg/day), a peripheral reversible DßH inhibitor, administered prior to high-salt diet, completely prevented the systolic BP increase in sik1-/- mice. In conclusion, SIK1 activity is necessary to prevent the development of salt-induced high blood pressure and associated SNS overactivity.


Subject(s)
Hypertension/etiology , Protein Serine-Threonine Kinases/physiology , Sodium Chloride, Dietary/adverse effects , Sympathetic Nervous System/physiology , Animals , Benzopyrans , Blood Pressure , Imidazoles , Kidney/physiology , Male , Mice, Knockout , Renin-Angiotensin System
SELECTION OF CITATIONS
SEARCH DETAIL
...