Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-35382112

ABSTRACT

Background: Acylpolyamines are one of the main non-peptide compounds present in spider venom and represent a promising alternative in the search for new molecules with antimicrobial action. Methods: The venom of Acanthoscurria natalensis spider was fractionated by reverse-phase liquid chromatography (RP-HPLC) and the antimicrobial activity of the fractions was tested using a liquid growth inhibition assay. The main antimicrobial fraction containing acylpolyamines (ApAn) was submitted to two additional chromatographic steps and analyzed by MALDI-TOF. Fractions of interest were accumulated for ultraviolet (UV) spectroscopy and ESI-MS/MS analysis and for minimum inhibitory concentration (MIC) and hemolytic activity determination. Results: Five acylpolyamines were isolated from the venom with molecular masses between 614 Da and 756 Da, being named ApAn728, ApAn614a, ApAn614b, ApAn742 and ApAn756. The analysis of UV absorption profile of each ApAn and the fragmentation pattern obtained by ESI-MS/MS suggested the presence of a tyrosyl unit as chromophore and a terminal polyamine chain consistent with structural units PA43 or PA53. ApAn presented MIC between 128 µM and 256 µM against Escherichia coli and Staphylococcus aureus, without causing hemolysis against mouse erythrocytes. Conclusion: The antimicrobial and non-hemolytic properties of the analyzed ApAn may be relevant for their application as possible therapeutic agents and the identification of an unconventional chromophore for spider acylpolyamines suggests an even greater chemical diversity.

2.
Article in English | MEDLINE | ID: mdl-34868282

ABSTRACT

The Theraphosidae family includes the largest number of species of the Mygalomorphae infraorder, with hundreds of species currently catalogued. However, there is a huge lack on physiologic and even ecologic information available, especially in Brazil, which is the most biodiverse country in the world. Over the years, spiders have been presented as a source of multiple biologically active compounds with basic roles, such as primary defense against pathogenic microorganisms or modulation of metabolic pathways and as specialized hunters. Spider venoms also evolved in order to enable the capture of prey by interaction with a diversity of molecular targets of interest, raising their pharmaceutical potential for the development of new drugs. Among the activities found in compounds isolated from venoms and hemocytes of Brazilian Theraphosidae there are antimicrobial, antifungal, antiparasitic and antitumoral, as well as properties related to proteinase action and neuromuscular blockage modulated by ionic voltage-gated channel interaction. These characteristics are present in different species from multiple genera, which is strong evidence of the important role in spider survival. The present review aims to compile the main results of studies from the last decades on Brazilian Theraphosidae with special focus on results obtained with the crude venom or compounds isolated from both venom and hemocytes, and their physiological and chemical characterization.

3.
Article in English | MEDLINE | ID: mdl-34925481

ABSTRACT

BACKGROUND: Almost all Tityus characterized toxins are from subgenera Atreus and Tityus, there are only a few data about toxins produced by Archaeotityus, an ancient group in Tityus genus. METHODS: Tityus (Archaeotityus) mattogrossensis crude venom was fractionated by high performance liquid chromatography, the major fractions were tested in a frog sciatic nerve single sucrose-gap technique. Two fractions (Tm1 and Tm2) were isolated, partially sequenced by MALDI-TOF/MS and electrophysiological assayed on HEK293 Nav 1.3, HEK293 Nav 1.6, DUM and DRG cells. RESULTS: The sucrose-gap technique showed neurotoxicity in four fractions. One fraction caused a delay of action potential repolarization and other three caused a reduction in amplitude. An electrophysiological assay showed that Tm1 is active on HEK293 Nav 1.3, HEK293 Nav 1.6, DUM and DRG cells, and Tm2 on HEK293 Nav 1.3 and DRG cells, but not in HEK293 Nav 1.6. In addition, Tm1 and Tm2 did promote a shift to more negative potentials strongly suggesting that both are α-NaScTx. CONCLUSION: Although Tityus (Archaeotityus) mattogrossensis is considered an ancient group in Tityus genus, the primary structure of Tm1 and Tm2 is more related to Tityus subgenus. The patch clamp electrophysiological tests suggest that Tm1 and Tm2 are NaScTx, and also promoted no shift to more negative potentials, strongly suggesting that both are α-NaScTx. This paper aimed to explore and characterize for the first time toxins from the ancient scorpion Tityus (Archaeotityus) mattogrossensis.

4.
Antibiotics (Basel) ; 9(9)2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32967114

ABSTRACT

Amphibian skin secretions are abundant in bioactive compounds, especially antimicrobial peptides. These molecules are generally cationic and rich in hydrophobic amino acids, have an amphipathic structure and adopt an α-helical conformation when in contact with microorganisms membranes. In this work, we purified and characterized Figainin 1, a novel antimicrobial and antiproliferative peptide from the cutaneous secretion of the frog Boana raniceps. Figainin 1 is a cationic peptide with eighteen amino acid residues-rich in leucine and isoleucine, with an amidated C-terminus-and adopts an α-helical conformation in the presence of trifluoroethanol (TFE). It displayed activity against Gram-negative and especially Gram-positive bacteria, with MIC values ranging from 2 to 16 µM, and showed an IC50 value of 15.9 µM against epimastigote forms of T. cruzi; however, Figanin 1 did not show activity against Candida species. This peptide also showed cytolytic effects against human erythrocytes with an HC50 of 10 µM, in addition to antiproliferative activity against cancer cells and murine fibroblasts, with IC50 values ranging from 10.5 to 13.7 µM. Despite its adverse effects on noncancerous cells, Figainin 1 exhibits interesting properties for the development of new anticancer agents and anti-infective drugs against pathogenic microorganisms.

5.
Biomolecules ; 10(5)2020 05 20.
Article in English | MEDLINE | ID: mdl-32443921

ABSTRACT

In recent years, the number of new antimicrobial drugs launched on the market has decreased considerably even though there has been an increase in the number of resistant microbial strains. Thus, antimicrobial resistance has become a serious public health problem. Amphibian skin secretions are a rich source of host defense peptides, which generally are cationic and hydrophobic molecules, with a broad-spectrum of activity. In this study, one novel multifunctional defense peptide was isolated from the skin secretion of the Chaco tree frog, Boana raniceps. Figainin 2 (1FLGAILKIGHALAKTVLPMVTNAFKPKQ28) is cationic and hydrophobic, adopts an α-helical structure in 50% (v/v) trifluoroethanol (TFE), and is thermally stable. This peptide exhibited activity against Gram-negative and Gram-positive pathogenic bacteria arboviruses, T. cruzi epimastigotes; however, it did not show activity against yeasts. Figainin 2 also showed antiproliferative activity on cancer cells, is moderately active on human erythrocytes, and activates the oxidative burst in human neutrophils.


Subject(s)
Amphibian Proteins/metabolism , Anura/metabolism , Defensins/metabolism , Skin/metabolism , Amphibian Proteins/chemistry , Amphibian Proteins/pharmacology , Animals , Arboviruses/drug effects , Bacteria/drug effects , Candida/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cells, Cultured , Defensins/chemistry , Defensins/pharmacology , Hemolysis/drug effects , Humans , Neutrophils/drug effects , Protein Conformation, alpha-Helical , Trypanosoma cruzi/drug effects
6.
Toxins (Basel) ; 12(5)2020 05 15.
Article in English | MEDLINE | ID: mdl-32429050

ABSTRACT

Apoptosis, a genetically directed process of cell death, has been studied for many years, and the biochemical mechanisms that surround it are well known and described. There are at least three pathways by which apoptosis occurs, and each pathway depends on extra or intracellular processes for activation. Apoptosis is a vital process, but disturbances in proliferation and cell death rates can lead to the development of diseases like cancer. Several compounds, isolated from scorpion venoms, exhibit inhibitory effects on different cancer cells. Indeed, some of these compounds can differentiate between healthy and cancer cells within the same tissue. During the carcinogenic process, morphological, biochemical, and biological changes occur that enable these compounds to modulate cancer but not healthy cells. This review highlights cancer cell features that enable modulation by scorpion neurotoxins. The properties of the isolated scorpion neurotoxins in cancer cells and the potential uses of these compounds as alternative treatments for cancer are discussed.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Arthropod Proteins/pharmacology , Ion Channels/drug effects , Membrane Transport Modulators/pharmacology , Neoplasms/drug therapy , Scorpion Venoms/pharmacology , Animals , Humans , Ion Channels/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Signal Transduction
7.
Curr Protein Pept Sci ; 18(1): 72-91, 2017.
Article in English | MEDLINE | ID: mdl-27226199

ABSTRACT

Depsipeptides are a group of biologically active peptides that have at least one of the amide bonds replaced by an ester bond. These peptides sometimes present additional chemical modifications, including unusual amino acid residues in their structures. Depsipeptides are known to exhibit a large array of bioactivities, such as anticancer, antiproliferative, antimicrobial, antiviral and antiplasmodial properties. They are commonly found in marine organisms: bacteria, tunicates, mollusks, sponges, and others. Herein, we summarize the latest insights about marine depsipeptides, their mechanisms of action and potential as therapeutic agents.


Subject(s)
Aquatic Organisms/chemistry , Depsipeptides/chemistry , Depsipeptides/pharmacology , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Clinical Trials as Topic , Depsipeptides/therapeutic use , Drug Evaluation, Preclinical , Humans , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Peptides, Cyclic/therapeutic use
8.
Toxicon ; 55(7): 1255-62, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20144637

ABSTRACT

This study evaluated the effects of [D-Leu(1)]Microcystin-LR variants, by the exposure of Hypophthalmichthys molitrix to Microcystis aeruginosa NPLJ4. Fish was placed in aquariums and exposed to 10(5) cells mL(-1). For 15 days, 05 individuals were removed every 05 days, and tissue samples of liver, skeletal muscle and intestinal tract were collected for histopathologic analyses. Following exposure, those surviving were placed in clean water for 15 days to evaluate their recovery. A control without toxins was maintained in the same conditions and exhibited normal histology and no tissue damage. In exposed fish, samples were characterized by serious damages that similarly affected the different organs, such as dissociation of cells, necrosis and haemorrhage. Samples showed signs of recovery but severe damages were still observed. The results should be valuable to analyze the potency of microcystin toxicity and to help in the diagnosis of fish deaths.


Subject(s)
Cyprinidae/physiology , Digestive System/pathology , Liver/pathology , Marine Toxins/chemistry , Marine Toxins/toxicity , Microcystins/chemistry , Microcystins/toxicity , Muscle, Skeletal/pathology , Animals , Chemical and Drug Induced Liver Injury/pathology , Chromatography, High Pressure Liquid , Hemorrhage/chemically induced , Hemorrhage/pathology , Intestinal Diseases/chemically induced , Intestinal Diseases/pathology , Mass Spectrometry , Muscular Diseases/chemically induced , Muscular Diseases/pathology , Necrosis , Survival
9.
Genet Mol Biol ; 33(4): 750-5, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21637586

ABSTRACT

Studies of genotoxicity in fish caused by cyanobacterial microcystins can be useful both in determining the sensitivity of native species, as well as comparing exposure routes. The genotoxicity caused by the microcystins LR and LA from a bloom collected in a eutrophic lake, was revealed in the fish Astyanaxbimaculatus, a native species from South America. LC50 (72 h) was determined as 242.81 µg L (-1) and LD50 (72 h) as 49.19 µg kg (-1) bw. There was a significant increase of DNA damage in peripheral erythrocytes, following intraperitoneal injection (ip) with tested concentrations of 24.58 µg kg (-1) bw and 36.88 µg kg (-1) bw, as well as through body exposure to a concentration of 103.72 µg L (-1) . Micronucleus (MN) induction was observed after ip injections of 24.58 µg kg (-1) bw and 36.88 µg kg (-1) bw for 72 h, as well as following body exposure for 72 at 103.72 µg L (-1) . Thus, both exposure routes resulted in MN induction and DNA damage. Apoptosis-necrosis testing was carried out only by ip injection with concentrations of 24.58 µg kg (-1) bw and 36.88 µg kg- 1 bw. Exposure to microcystins at lower concentrations induced more apoptosis than necrosis in peripheral erythrocytes, whereas exposure at higher concentrations gave rise to both conditions. Thus, Astyanax bimaculatus can be considered as a species sensitive to the genotoxic effects caused by microcystins.

10.
Toxicon ; 43(3): 303-10, 2004 Mar 01.
Article in English | MEDLINE | ID: mdl-15033329

ABSTRACT

Epipedobates flavopictus, Dendrobatidae, is a small aposematic frog found in Brazilian Cerrado bioma. In the present work, we isolated and characterized chemically the most abundant alkaloids present in the cutaneous extract of E. flavopictus. The specimens were collected in Pirenópolis (Goiás, Brazil), their skins were removed and extracted with methanol, and submitted to purification by HPLC and identification by gas chromatography and mass spectrometry. Pumiliotoxin 251D, histrionicotoxin 285Da and two decahydroquinolines, 219A and 243A, were identified. The pumiliotoxin 251D was tested on isolated frog sciatic nerve and on isolated guinea pig ileum muscle. The pumiliotoxin 251D slightly reduced the action potentials amplitude of frog sciatic nerve. The crude skin extract of E. flavopictus and the pumiliotoxin 251D produced rhythmic contractions and increased the muscular tension on isolated guinea pig ileum.


Subject(s)
Alkaloids/chemistry , Amphibian Venoms/chemistry , Anura , Skin/chemistry , Alkaloids/pharmacology , Amphibian Venoms/pharmacology , Animals , Chromatography, Gas , Chromatography, High Pressure Liquid , Guinea Pigs , Ileum/drug effects , Lethal Dose 50 , Male , Mass Spectrometry , Mice , Muscle Contraction/drug effects , Sciatic Nerve/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...