Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 22(4): 421-434, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36800443

ABSTRACT

SGN-CD228A is an investigational antibody-drug conjugate (ADC) directed to melanotransferrin (CD228, MELTF, MFI2, p97), a cell-surface protein first identified in melanoma. SGN-CD228A consists of a humanized antibody, hL49, with high specificity and affinity for CD228 that is stably conjugated to 8 molecules of the clinically validated microtubule-disrupting agent monomethyl auristatin E (MMAE) via a novel glucuronide linker. We performed comprehensive IHC studies, which corroborated published RNA sequencing data and confirmed low CD228 expression in normal tissues and high expression in several cancers, including melanoma, squamous non-small cell lung cancer (NSCLC), triple-negative breast cancer (TNBC), colorectal cancer, and pancreatic cancer. SGN-CD228A was efficiently internalized in various tumor cell types, and its cytotoxic activity was dependent on CD228 expression and internalization and intrinsic sensitivity to the MMAE payload. Compared with the valine-citrulline dipeptide linker, the novel glucuronide linker increased the cellular retention of MMAE in vitro and conferred improved antitumor activity against melanoma cell lines in vitro and in vivo. In addition, SGN-CD228A was active across melanoma, TNBC, and NSCLC cell line- and patient-derived xenograft models with heterogeneous antigen expression. In vivo, CD228 expression was important for response to SGN-CD228A but was not well correlated across all tumor types, suggesting that other factors associated with ADC activity are important. Overall, SGN-CD228A is a CD228-directed, investigational ADC that employs innovative technology and has compelling preclinical antitumor activity. SGN-CD228A is investigated in a Phase I clinical trial (NCT04042480) in patients with advanced solid tumors.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Immunoconjugates , Lung Neoplasms , Melanoma , Triple Negative Breast Neoplasms , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Glucuronides , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Immunoconjugates/chemistry , Xenograft Model Antitumor Assays
2.
ChemMedChem ; 16(7): 1077-1081, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33369163

ABSTRACT

Tubulysins have emerged in recent years as a compelling drug class for delivery to tumor cells via antibodies. The ability of this drug class to exert bystander activity while retaining potency against multidrug-resistant cell lines differentiates them from other microtubule-disrupting agents. Tubulysin M, a synthetic analogue, has proven to be active and well tolerated as an antibody-drug conjugate (ADC) payload, but has the liability of being susceptible to acetate hydrolysis at the C11 position, leading to attenuated potency. In this work, we examine the ability of the drug-linker and conjugation site to preserve acetate stability. Our findings show that, in contrast to a more conventional protease-cleavable dipeptide linker, the ß-glucuronidase-cleavable glucuronide linker protects against acetate hydrolysis and improves ADC activity in vivo. In addition, site-specific conjugation can positively impact both acetate stability and in vivo activity. Together, these findings provide the basis for a highly optimized delivery strategy for tubulysin M.


Subject(s)
Immunoconjugates/chemistry , Oligopeptides/chemistry , Animals , Humans , Immunoconjugates/therapeutic use , Mice , Molecular Structure , Oligopeptides/therapeutic use , Rats , Rats, Sprague-Dawley , Xenograft Model Antitumor Assays
3.
Mol Cancer Ther ; 17(8): 1752-1760, 2018 08.
Article in English | MEDLINE | ID: mdl-29866744

ABSTRACT

Although antibody-drug conjugates (ADCs) find increasing applications in cancer treatment, de novo or treatment-emergent resistance mechanisms may impair clinical benefit. Two resistance mechanisms that emerge under prolonged exposure include upregulation of transporter proteins that confer multidrug resistance (MDR+) and loss of cognate antigen expression. New technologies that circumvent these resistance mechanisms may serve to extend the utility of next-generation ADCs. Recently, we developed the quaternary ammonium linker system to expand the scope of conjugatable payloads to include tertiary amines and applied the linker to tubulysins, a highly potent class of tubulin binders that maintain activity in MDR+ cell lines. In this work, tubulysin M, which contains an unstable acetate susceptible to enzymatic hydrolysis, and two stabilized tubulysin analogues were prepared as quaternary ammonium-linked glucuronide-linkers and assessed as ADC payloads in preclinical models. The conjugates were potent across a panel of cancer cell lines and active in tumor xenografts, including those displaying the MDR+ phenotype. The ADCs also demonstrated potent bystander activity in a coculture model comprised of a mixture of antigen-positive and -negative cell lines, and in an antigen-heterogeneous tumor model. Thus, the glucuronide-tubulysin drug-linkers represent a promising ADC payload class, combining conjugate potency in the presence of the MDR+ phenotype and robust activity in models of tumor heterogeneity in a structure-dependent manner. Mol Cancer Ther; 17(8); 1752-60. ©2018 AACR.


Subject(s)
Glucuronides/metabolism , Immunoconjugates/metabolism , Animals , Humans , Mice , Mice, SCID , Xenograft Model Antitumor Assays
4.
ACS Omega ; 2(11): 8222-8226, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-29214237

ABSTRACT

Gold nanoparticles (AuNPs) and aptamers are compelling building blocks for analytical assays with desired attributes of selectivity and sensitivity and may theoretically form the basis of instrument-free color-changing assays for any target against which a DNA aptamer has been selected. However, assays for proteins based on these components may be subject to significant interferences from the interaction of proteins with nanoparticles. We found that for three representative protein/aptamer systems-thrombin, apolipoprotein E, and platelet-derived growth factor-pH-dependent aggregation occurred, even in the absence of the aptamer, to differing extents. This effect is most pronounced when proteins display net surface charge (i.e., when pH < pI) but can even be observed at pH = pI when the protein retains regions of positive charge. These interactions of AuNPs and cationic regions on proteins may present an important limitation on the development of AuNP-based analytical assays.

5.
Mol Cancer Ther ; 15(5): 938-45, 2016 05.
Article in English | MEDLINE | ID: mdl-26944920

ABSTRACT

A quaternary ammonium-based drug-linker has been developed to expand the scope of antibody-drug conjugate (ADC) payloads to include tertiary amines, a functional group commonly present in biologically active compounds. The linker strategy was exemplified with a ß-glucuronidase-cleavable auristatin E construct. The drug-linker was found to efficiently release free auristatin E (AE) in the presence of ß-glucuronidase and provide ADCs that were highly stable in plasma. Anti-CD30 conjugates comprised of the glucuronide-AE linker were potent and immunologically specific in vitro and in vivo, displaying pharmacologic properties comparable with a carbamate-linked glucuronide-monomethylauristatin E control. The quaternary ammonium linker was then applied to a tubulysin antimitotic drug that contained an N-terminal tertiary amine that was important for activity. A glucuronide-tubulysin quaternary ammonium linker was synthesized and evaluated as an ADC payload, in which the resulting conjugates were found to be potent and immunologically specific in vitro, and displayed a high level of activity in a Hodgkin lymphoma xenograft. Furthermore, the results were superior to those obtained with a related tubulysin derivative containing a secondary amine N-terminus for conjugation using previously known linker technology. The quaternary ammonium linker represents a significant advance in linker technology, enabling stable conjugation of payloads with tertiary amine residues. Mol Cancer Ther; 15(5); 938-45. ©2016 AACR.


Subject(s)
Ammonium Compounds/chemistry , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/pharmacology , Immunoconjugates/chemistry , Immunoconjugates/pharmacology , Animals , Antibodies, Monoclonal/pharmacokinetics , Cell Line, Tumor , Disease Models, Animal , Drug Liberation , Drug Stability , Humans , Immunoconjugates/pharmacokinetics , Kinetics , Mice , Molecular Structure , Protein Binding , Rats , Tubulin , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...