Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 150(19): 194307, 2019 May 21.
Article in English | MEDLINE | ID: mdl-31117791

ABSTRACT

We report experimental measurements of the absolute total cross sections (TCSs) for electron scattering from 1-butanol at impact energies in the range 80-400 eV. Those measurements were conducted by considering the attenuation of a collimated electron beam, at a given energy, through a gas cell containing 1-butanol, at a given pressure, and through application of the Beer-Lambert law to derive the required TCS. We also report theoretical results using the Independent-Atom Model with Screening Corrected Additivity Rule and Interference approach. Those results include the TCS, the elastic integral cross section (ICS), the ionization total ICS, and the sum over all excitation process ICSs with agreement at the TCS level between our measured and calculated results being encouraging.

2.
J Chem Phys ; 147(19): 194307, 2017 Nov 21.
Article in English | MEDLINE | ID: mdl-29166110

ABSTRACT

Absolute total cross section (TCS) measurements for electron scattering from 1-propanol molecules are reported for impact energies from 40 to 500 eV. These measurements were obtained using a new apparatus developed at Juiz de Fora Federal University-Brazil, which is based on the measurement of the attenuation of a collimated electron beam through a gas cell containing the molecules to be studied at a given pressure. Besides these experimental measurements, we have also calculated TCS using the Independent-Atom Model with Screening Corrected Additivity Rule and Interference (IAM-SCAR+I) approach with the level of agreement between them being typically found to be very good.

3.
Phys Chem Chem Phys ; 16(25): 12793-801, 2014 Jul 07.
Article in English | MEDLINE | ID: mdl-24837441

ABSTRACT

A study of the OH + SO → H + SO2 reaction using a quasi-classical trajectory method is presented with the aim of investigating the role of the ro-vibrational energy of the reactants in the reactivity. The calculations were carried out using a previously reported global potential energy surface for HSO2((2)A). Different initial conditions with one and both reactants ro-vibrationally excited were studied. The reactive cross sections, for each studied combination, are calculated and then fitted to a capture-like model combined with a factor accounting for the recrossing effects. The Vibrational Energy Quantum Mechanical Threshold of the Complex method was used to correct for the zero-point vibrational energy leakage of the classical calculations. State specific and averaged rate constants are reported. The reactivity is affected when ro-vibrational energy of either of the reactants is changed. The present calculations provide a theoretical support for the experimental rate constant for temperatures below 550 K, but fail to account for the significant fall in the observed rate constant upon increasing the temperature above this value.

SELECTION OF CITATIONS
SEARCH DETAIL
...