Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Inorg Biochem ; 226: 111625, 2022 01.
Article in English | MEDLINE | ID: mdl-34655962

ABSTRACT

For some cancer subtypes, such as triple-negative breast cancer, there are no specific therapies, which leads to a poor prognosis associated with invasion and metastases. Ruthenium complexes have been developed to act in all steps of tumor growth and its progression. In this study, we investigated the effects of Ruthenium (II) complexes coupled to the amino acids methionine (RuMet) and tryptophan (RuTrp) on the induction of cell death, clonogenic survival ability, inhibition of angiogenesis, and migration of MDA-MB-231 cells (human triple-negative breast cancer). The study also demonstrated that the RuMet and RuTrp complexes induce cell cycle blockage and apoptosis of MDA-MB-231 cells, as evidenced by an increase in the number of Annexin V-positive cells, p53 phosphorylation, caspase 3 activation, and poly(ADP-ribose) polymerase cleavage. Moreover, morphological changes and loss of mitochondrial membrane potential were detected. The RuMet and RuTrp complexes induced DNA damage probably due to reactive oxygen species production related to mitochondrial membrane depolarization. Therefore, the RuMet and RuTrp complexes acted directly on breast tumor cells, leading to cell death and inhibiting their metastatic potential; this reveals the potential therapeutic action of these drugs.


Subject(s)
Breast Neoplasms/drug therapy , Coordination Complexes , Methionine/chemistry , Rubidium/chemistry , Tryptophan/chemistry , Animals , Apoptosis/drug effects , BALB 3T3 Cells , Breast Neoplasms/metabolism , Chlorocebus aethiops , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Female , Humans , Mice , Neoplasm Proteins/metabolism , Vero Cells
2.
J Biol Inorg Chem ; 26(4): 385-401, 2021 06.
Article in English | MEDLINE | ID: mdl-33837856

ABSTRACT

Metal complexes based on ruthenium have established excellent activity with less toxicity and great selectivity for tumor cells. This study aims to assess the anticancer potential of ruthenium(II)/allopurinol complexes called [RuCl2(allo)2(PPh3)2] (1) and [RuCl2(allo)2(dppb)] (2), where allo means allopurinol, PPh3 is triphenylphosphine and dppb, 1,4-bis(diphenylphosphino)butane. The complexes were synthesized and characterized by elemental analysis, IR, UV-Vis and NMR spectroscopies, cyclic voltammetry, molar conductance measurements, as well as the X-ray crystallographic analysis of complex 2. The antitumor effects of compounds were determined by cytotoxic activity and cellular and molecular responses to cell death mechanisms. Complex 2 showed good antitumor profile prospects because in addition to its cytotoxicity, it causes cell cycle arrest, induction of DNA damage, morphological and biochemical alterations in the cells. Moreover, complex 2 induces cell death by p53-mediated apoptosis, caspase activation, increased Beclin-1 levels and decreased ROS levels. Therefore, complex 2 can be considered a suitable compound in antitumor treatment due to its cytotoxic mechanism.


Subject(s)
Allopurinol/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Mammary Neoplasms, Animal/drug therapy , Ruthenium Compounds/chemistry , Ruthenium Compounds/pharmacology , Allopurinol/chemistry , Animals , Ascitic Fluid/cytology , Cell Cycle/drug effects , Cell Migration Assays , Cell Survival/drug effects , Cells, Cultured , Female , Fibroblasts , Humans , Mice , Neoplasms, Experimental/drug therapy
3.
Dalton Trans ; 48(18): 6026-6039, 2019 May 07.
Article in English | MEDLINE | ID: mdl-30724926

ABSTRACT

In this paper, four new ruthenium complexes, [Ru(N-S)(dppm)2]PF6 (1), [Ru(N-S)(dppe)2]PF6 (2), [Ru(N-S)2(dppp)] (3) and [Ru(N-S)2(PPh3)2] (4) [dppm = 1,1-bis(diphenylphosphino)methane, dppe = 1,2-bis(diphenylphosphino)ethane, dppp = 1,3-bis(diphenylphosphino)propane, PPh3 = triphenylphosphine and N-S = 2-mercaptopyrimidine anion] were synthesized and characterized using spectroscopy techniques, molar conductance, elemental analysis, electrochemical techniques and X-ray diffraction. The DNA binding studies were investigated using voltammetry and spectroscopy techniques. The results show that all complexes exhibit a weak interaction with DNA. HSA interaction with the complexes was studied using fluorescence emission spectroscopy, where the results indicate a spontaneous interaction between the species by a static quenching mechanism. The cytotoxicity of the complexes was evaluated against A549, MDA-MB-231 and HaCat cells by MTT assay. Complexes (1) and (2), which are very active against triple negative MDA-MB-231, were subjected to further biological tests with this cell line. The cytotoxic activity triggered by the complexes was confirmed by clonogenic assay. Cell cycle analyses demonstrated marked anti-proliferative effects, especially at the G0/G1 and S phases. The morphological detection of apoptosis and necrosis - HO/PI and Annexin V-FITC/PI assay, elucidated that the type of cell death triggered by these complexes was probably by apoptosis. The in vivo toxicological assessment performed on zebrafish embryos revealed that complexes (1) and (2) did not present embryotoxic or toxic effects during embryonic and larval development showing that they are promising new prototypes of safer and more effective drugs for triple negative breast cancer treatment.


Subject(s)
Antineoplastic Agents/chemical synthesis , Coordination Complexes/chemical synthesis , Intercalating Agents/chemical synthesis , Pyrimidines/chemistry , Ruthenium/chemistry , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/toxicity , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Coordination Complexes/pharmacology , Coordination Complexes/toxicity , DNA/metabolism , Drug Design , Electrochemical Techniques/methods , Humans , Intercalating Agents/pharmacology , Intercalating Agents/toxicity , Molecular Structure , Structure-Activity Relationship , Thermodynamics , Zebrafish/embryology
4.
J Inorg Biochem ; 149: 91-101, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25873134

ABSTRACT

The motivation to use ruthenium complexes in cancer treatment has led our research group to synthesize complexes with this metal and test them against several types of tumor cells, yielding promising results. In this paper the results of biological tests, assessed by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, were carried out on the complexes cis-[RuCl(BzCN)(bipy)(dppe)]PF6 (1), cis-[RuCl(BzCN)(bipy)(dppb)]PF6 (2), cis-[RuCl(BzCN)(bipy)(dppf)]PF6 (3) and cis-[RuCl(BzCN)(phen)(dppb)]PF6 (4) which are described [BzCN = b enzonitrile; bipy = 2,2'-bipyridine; phen = 1,10-phenanthroline; dppe = 1,2-bis(diphenylphosphino) ethane; dppb = 1,4-bis-(diphenylphosphino)butane; dppf = 1,1'-bis(diphenylphosphino)ferrocene]. The present study is focused on the cytotoxic activity of complexes (1)-(4) against four tumor cell lines and on the apoptosis and changes in the cell cycle and gene expression observed in the sarcoma 180 (S180) tumor cell line treated with complex (1). The results demonstrated that this complex inhibits S180 cell growth, with an IC50 of 17.02 ± 8.21 µM, while exhibiting lower cytotoxicity (IC50 = 53.73 ± 5.71 µM) towards lymphocytes (normal cells). Flow cytometry revealed that the complex inhibits the growth of tumor cells by inducing apoptosis as evidenced by an increase in the proportion of cells positive for annexin V staining and G0/G1 phase cell-cycle arrest. Further investigation showed that complex (1) induces a drop in the mitochondrial membrane potential and provokes a decrease in Bcl-2 protein expression and increase in caspase 3 activation, while the increased activation of caspase 8 caused a decrease in the gene expression in caspases 3 and 9. Increases in Tp53 and Bax expressions were also observed.


Subject(s)
Antineoplastic Agents/chemical synthesis , Coordination Complexes/chemical synthesis , Ruthenium/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...