Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37687788

ABSTRACT

This paper presents the development and application of an optical fiber-embedded tendon based on biomimetic multifunctional structures. The tendon was fabricated using a thermocure resin (polyurethane) and the three optical fibers with one fiber Bragg grating (FBG) inscribed in each fiber. The first step in the FBG-integrated artificial tendon analysis is the mechanical properties assessment through stress-strain curves, which indicated the customization of the proposed device, since it is possible to tailor the Young's modulus and strain limit of the tendon as a function of the integrated optical fibers, where the coated and uncoated fibers lead to differences in both parameters, i.e., strain limits and Young's modulus. Then, the artificial tendon integrated with FBG sensors undergoes three types of characterization, which assesses the influence of temperature, single-axis strain, and curvature. Results show similarities in the temperature responses in all analyzed FBGs, where the variations are related to the heterogeneity on the polyurethane matrix distribution. In contrast, the FBGs embedded in the tendon presented a reduction in the strain sensitivity when compared with the bare FBGs (i.e., without the integration in the artificial tendon). Such results demonstrated a reduction in the sensitivity as high as 77% when compared with the bare FBGs, which is related to strain field distributions in the FBGs when embedded in the tendon. In addition, the curvature tests indicated variations in both optical power and wavelength shift, where both parameters are used on the angle estimation using the proposed multifunctional artificial tendon. To that extent, root mean squared error of around 3.25° is obtained when both spectral features are considered. Therefore, the proposed approach indicates a suitable method for the development of smart structures in which the multifunctional capability of the device leads to the possibility of using not only as a structural element in tendon-driven actuators and devices, but also as a sensor element for the different structures.

2.
Polymers (Basel) ; 15(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36771940

ABSTRACT

This paper presents the development and sensor applications of 3D-printed polymer optical fibers (POFs) using commercially available filaments. The well-known intensity variation sensor was developed using this fiber for temperature and curvature sensing, where the results indicate a linear response in the curvature analysis, with a coefficient of determination (R2) of 0.97 and sensitivity of 4.407 × 10-4 mW/∘, whereas the temperature response was fitted to an R2 of 0.956 with a sensitivity of 5.718 × 10-3 mW/∘C. Then, the POF was used in the development of a modal interferometer by splicing the POF in-between two single-mode fibers (SMFs), which result in a single-mode-multimode-single-mode (SMS) configuration. The such interferometer was tested for temperature and axial strain responses, where the temperature response presented a linear trend R2 of around 0.98 with a sensitivity of -78.8 pm/∘C. The negative value of the sensitivity is related to the negative thermo-optic coefficient commonly obtained in POFs. Furthermore, the strain response of the SMS interferometer showed a high sensitivity (9.5 pm/µÏµ) with a quadratic behavior in which the R2 of around 0.99 was obtained. Therefore, the proposed approach is a low-cost, environmentally friendly and straightforward method for the production of highly sensitive optical fiber sensors.

3.
Polymers (Basel) ; 14(21)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36365491

ABSTRACT

This paper presents an analysis of the mechanical properties of different polymer optical fibers (POFs) at ultraviolet (UV) radiation conditions. Cyclic transparent optical polymer (CYTOP) and polymethyl methacrylate (PMMA) optical fibers are used in these analyses. In this case, the fiber samples are irradiated at the same wavelength, pulse time and energy conditions for different times, namely, 10 s, 1 min, 2 min and 3 min. The samples are tested in tensile tests and dynamic mechanical thermal analysis (DMTA) to infer the variation in the static and dynamic properties of such fibers as a function of the UV radiation condition. Furthermore, reference samples of each fiber (without UV radiation) are tested for comparison purposes. The results show a lower UV resistance of PMMA fibers, i.e., higher variation in the material features in static conditions (Young's modulus variation of 0.65 GPa). In addition, CYTOP fiber (material known for its high UV resistance related to its optical properties) also presented Young's modulus variation of around 0.38 GPa. The reason for this reduction in the moduli is related to possible localized annealing due to thermal effects when the fibers are subjected to UV radiation. The dynamic results also indicated a higher variation in the PMMA fibers storage modulus, which is around 30% higher than the variations in the CYTOP fibers when different radiation conditions are analyzed. However, CYTOP fibers show a smaller operational temperature range and higher variation in the storage modulus as a function of the temperature when compared with PMMA fibers. In contrast, PMMA fibers show higher variations in their material properties when subjected to oscillatory loads at different frequency conditions. Thus, the results obtained in this work can be used as guidelines for the influence of UV radiation in POFs not only for the material choice, but also on the limitations of UV radiation in the fabrication of the grating as well as in sensor applications at UV radiation conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...