Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36835289

ABSTRACT

The accumulation of synthetic plastic waste in the environment has become a global concern. Microbial enzymes (purified or as whole-cell biocatalysts) represent emerging biotechnological tools for waste circularity; they can depolymerize materials into reusable building blocks, but their contribution must be considered within the context of present waste management practices. This review reports on the prospective of biotechnological tools for plastic bio-recycling within the framework of plastic waste management in Europe. Available biotechnology tools can support polyethylene terephthalate (PET) recycling. However, PET represents only ≈7% of unrecycled plastic waste. Polyurethanes, the principal unrecycled waste fraction, together with other thermosets and more recalcitrant thermoplastics (e.g., polyolefins) are the next plausible target for enzyme-based depolymerization, even if this process is currently effective only on ideal polyester-based polymers. To extend the contribution of biotechnology to plastic circularity, optimization of collection and sorting systems should be considered to feed chemoenzymatic technologies for the treatment of more recalcitrant and mixed polymers. In addition, new bio-based technologies with a lower environmental impact in comparison with the present approaches should be developed to depolymerize (available or new) plastic materials, that should be designed for the required durability and for being susceptible to the action of enzymes.


Subject(s)
Plastics , Waste Management , Polymers , Polyurethanes , Polyethylene Terephthalates , Biotechnology , Recycling
2.
FEBS J ; 290(12): 3185-3202, 2023 06.
Article in English | MEDLINE | ID: mdl-36695006

ABSTRACT

Enzymatic degradation of poly(ethylene terephthalate) (PET) is becoming a reality because of the identification of novel PET-hydrolysing enzymes (PHEs) and the engineering of evolved enzyme variants. Here, improved variants of leaf-branch compost cutinase (LCC), a thermostable enzyme isolated by a metagenomic approach, were generated by a semi-rational protein engineering approach. Starting from a deleted LCC form lacking the secretion signal (ΔLCC), single and double variants possessing a higher activity on PET were isolated. The single-point F243T ΔLCC variant partially (~ 67%) depolymerized amorphous PET film producing ~ 21.9 mm of products after 27 h of reaction at 72 °C. The S101N/F243T ΔLCC double variant reached a further increase in activity on PET. Notably, for both single and double variants the highest conversion yield was obtained at 55 °C. Kinetics studies and molecular dynamics simulations support that a slight decreased affinity for PET is responsible for the superior degradation performance of the S101N/F243T variant and that this stems from a slightly higher flexibility of the active site region close to position 243. Furthermore, our findings question the need for a high reaction temperature for PET degradation, at least for LCC: at ≥ 70 °C, the conversion of amorphous PET into a more crystalline polymer, resistant to enzymatic hydrolysis, is favoured. The evolved S101N/F243T ΔLCC variant is able to depolymerize fully 1.3 g of untreated postconsumer PET waste in ≤ 3 days at 55 °C (using 1.25 mg of enzyme only), this making PET enzymatic degradation by engineering LCC a more ecofriendly and sustainable process.


Subject(s)
Carboxylic Ester Hydrolases , Polyethylene Terephthalates , Polyethylene Terephthalates/metabolism , Temperature , Carboxylic Ester Hydrolases/metabolism , Protein Engineering , Hydrolases/chemistry
3.
Sci Total Environ ; 843: 157017, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35777567

ABSTRACT

Plastic pollution is becoming an emerging environmental issue due to inappropriate disposal at the end of the materials life cycle. When plastics are released, they undergo physical and chemical corrosion, leading to the formation of small particles, commonly referred to as microplastics. In this study, a microbial community derived from the leachate of a bioreactor containing a mixture of soil and plastic collected during a landfill mining process underwent an enrichment protocol in order to select the microbial species specifically involved in plastic degradation. The procedure was set up and tested on polyethylene, polyvinyl chloride, and polyethylene terephthalate, both in anaerobic and aerobic conditions. The evolution of the microbiome has been monitored using a combined approach based on microscopy, marker-gene amplicon sequencing, genome-centric metagenomics, degradation assays, and GC-MS analyses. This procedure permitted us to deeply investigate the metabolic pathways potentially involved in plastic degradation and to depict the route for microplastics metabolization from the enriched microbial community. Six enzymes, among the ones already identified, were found in our samples (alkane 1-monooxygenase, cutinase, feruloyl esterase, triacylglycerol lipase, medium-chain acyl-CoA dehydrogenase, and protocatechuate 4,5-dioxygenase) and new enzymes, addressed as MHETases most probably for the presence of the catalytic triad (His-Asp-Ser), were detected. Among the enzymes involved in plastics degradation, alkane 1-monooxygenase was found in high copy number (between ten and 62 copies) in the metagenomes that resulted most abundant in the microbiome enriched with polyethylene, while protocatechuate 4,5-dioxygenase was found between one and eight copies in the most abundant metagenomes of the microbial culture enriched with polyethylene terephthalate. Degradation assays, performed using both bacterial lysates and supernatants, revealed interesting results on polyethylene terephthalate degradation. Moreover, this study demonstrates to what extent different types of microplastics can affect the microbial community composition. The results obtained significantly increase the knowledge of the plastic degradation process.


Subject(s)
Microplastics , Water Pollutants, Chemical , Cytochrome P-450 CYP4A , Metagenome , Metagenomics , Plastics/metabolism , Polyethylene , Polyethylene Terephthalates
4.
FEBS J ; 288(16): 4730-4745, 2021 08.
Article in English | MEDLINE | ID: mdl-33792200

ABSTRACT

The polyester PET (poly(ethylene terephthalate)) plastic is chemically inert and remarkably persistent, posing relevant and global pollution concerns due to its accumulation in ecosystems across the globe. In past years, research focused on identifying bacteria active on PET and on the specific enzymes responsible for its degradation. Here, the enzymatic degradation of PET can be considered as an 'erosion process' that takes place on the surface of an insoluble material and results in an unusual, substrate-limited kinetic condition. In this review, we report on the most suitable models to evaluate the kinetics of PET-hydrolyzing enzymes, which takes into consideration the amount of enzyme adsorbed on the substrate, the enzyme-accessible ester bonds, and the product inhibition effects. Careful kinetic analysis is especially relevant to compare enzymes from different sources and evolved variants generated by protein engineering studies as well. Furthermore, the analytical methods most suitable to screen natural bacteria and recombinant variant libraries generated by protein engineering have been also reported. These methods rely on different detection systems and are performed both on model compounds and on different PET samples (e.g., nanoparticles, microparticles, and waste products). All this meaningful information represents an optimal starting point and boosts the process of identifying systems able to biologically recycle PET waste products.


Subject(s)
Enzymes/metabolism , Polyethylene Terephthalates/metabolism , Biocatalysis , Enzymes/analysis , Kinetics
5.
Int J Mol Sci ; 23(1)2021 Dec 27.
Article in English | MEDLINE | ID: mdl-35008691

ABSTRACT

Enzymatic degradation is a promising green approach to bioremediation and recycling of the polymer poly(ethylene terephthalate) (PET). In the past few years, several PET-hydrolysing enzymes (PHEs) have been discovered, and new variants have been evolved by protein engineering. Here, we report on a straightforward workflow employing semi-rational protein engineering combined to a high-throughput screening of variant libraries for their activity on PET nanoparticles. Using this approach, starting from the double variant W159H/S238F of Ideonella sakaiensis 201-F6 PETase, the W159H/F238A-ΔIsPET variant, possessing a higher hydrolytic activity on PET, was identified. This variant was stabilized by introducing two additional known substitutions (S121E and D186H) generating the TS-ΔIsPET variant. By using 0.1 mg mL-1 of TS-ΔIsPET, ~10.6 mM of degradation products were produced in 2 days from 9 mg mL-1 PET microparticles (~26% depolymerization yield). Indeed, TS-ΔIsPET allowed a massive degradation of PET nanoparticles (>80% depolymerization yield) in 1.5 h using only 20 µg of enzyme mL-1. The rationale underlying the effect on the catalytic parameters due to the F238A substitution was studied by enzymatic investigation and molecular dynamics/docking analysis. The present workflow is a well-suited protocol for the evolution of PHEs to help generate an efficient enzymatic toolbox for polyester degradation.


Subject(s)
Bacteria/enzymology , Enzymes/metabolism , Polyethylene Terephthalates/chemistry , Protein Engineering , Biodegradation, Environmental , Computer Simulation , Enzyme Stability , Hydrolysis , Kinetics , Microplastics , Molecular Dynamics Simulation , Nanoparticles/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...