Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 44(9): 197-204, 2001.
Article in English | MEDLINE | ID: mdl-11762462

ABSTRACT

Using a dispersion model to calculate ambient odour concentrations, the separation distance between livestock buildings and residential areas is defined by the odour impact criteria using a combination of a pre-selected odour threshold and an exceeding probability. The dynamic Austrian Odour Dispersion Model (AODM), a Gaussian model, is used to calculate the direction-dependent separation distances for several combinations of these two values, which represent the protection level of various land use categories. The calculated direction-dependent separation distances are a function of the prevailing wind velocity and atmospheric stability conditions. At a site in the Austrian North-alpine foreland, the direction-dependent separation distance (calculated on the basis of a two year time series of meteorological data) for pure residential areas (3% exceeding probability over the year for an odour threshold of 1 OU/m3) lies between 99 m (for northerly winds with a probability of less than 3%) and 362 m (for westerly winds with a probability of 34%). For west and east the main wind directions, odour sensation can be expected more often for higher wind velocities and a neutral or stable atmosphere around sunset. Northerly and southerly winds show the typical diurnal variation of a local valley wind system with predominantly northerly daytime up-valley and southerly night-time down-valley winds.


Subject(s)
Air Pollutants/analysis , Models, Theoretical , Odorants , Air Movements , Animals , Animals, Domestic , Facility Design and Construction , Forecasting , Housing , Humans
2.
Int J Biometeorol ; 43(4): 154-62, 2000 Mar.
Article in English | MEDLINE | ID: mdl-10789916

ABSTRACT

The indoor climate of livestock buildings is of importance for the well-being and health of animals and their production performance (daily weight gain, milk yield etc). By using a steady-state model for the sensible and latent heat fluxes and the CO2 and odour mass flows, the indoor climate of mechanically ventilated livestock buildings can be calculated. These equations depend on the livestock (number of animals and how they are kept), the insulation of the building and the characteristics of the ventilation system (ventilation rate). Since the model can only be applied to animal houses where the ventilation systems are mechanically controlled (this is the case for a majority of finishing pig units), the calculations were done for an example of a finishing pig unit with 1,000 animal places. The model presented used 30 min values of the outdoor parameters temperature and humidity, collected over a 2-year period, as input. The projected environment inside the livestock building was compared with recommended values. The duration of condensation on the inside surfaces was also calculated.


Subject(s)
Animal Welfare , Housing, Animal/standards , Swine , Animals , Carbon Dioxide/analysis , Models, Theoretical , Temperature , Ventilation
SELECTION OF CITATIONS
SEARCH DETAIL
...