Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Res Sq ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38645077

ABSTRACT

Binge eating disorder, characterized by the overconsumption of food in a discrete time period, is the most common eating disorder in the United States, but its neurological basis is not fully understood. The paraventricular nucleus of the thalamus (PVT) is a limbic brain region implicated in eating, and the anorexigenic neuropeptide, pituitary adenylate cyclase-activating polypeptide (PACAP), is densely expressed in the PVT. This study sought to examine the possible involvement of PACAP in the PVT in binge-type eating. First, a model of binge-type eating was established in mice. Male and female C57BL/6J mice were given limited access to Milk Chocolate Ensure Plus® or had access only to chow and water. Under this model, while males and females both engaged in binge-type eating with Ensure, females engaged in this behavior to a greater degree than males. Next, the role of PACAP in the PVT was defined in relation to binge-type eating. Using quantitative real-time PCR, females were found to have higher baseline levels of PVT PACAP mRNA than males, but only males showed an increase in levels of PACAP after a history of binge-type eating, and only males showed a reduction in levels of PACAP immediately prior to a binge session. Using chemogenetics in PACAP-Cre transgenic mice on a C57BL/6J background, activation of PVT PACAP+ cells with a Cre-dependent Gq-DREADD was found to reduce binge-type eating, significantly in male but not female mice. These results indicate that PVT PACAP is involved in binge-type eating in a sex-dependent manner, with a decrease in PVT PACAP levels preceding binge-type eating in male mice, and enhanced PVT PACAP+ cell activity suppressing binge-type eating in male mice. Together, these results suggest that the PACAP system could be targeted in specific patient populations to help treat binge eating disorder.

2.
Article in English | MEDLINE | ID: mdl-38528134

ABSTRACT

Although the kappa-opioid receptor (KOR) and its endogenous ligand, dynorphin, are believed to be involved in ethanol drinking, evidence on the direction of their effects has been mixed. The nucleus accumbens (NAc) shell densely expresses KORs, but previous studies have not found KOR activation to influence ethanol drinking. Using microinjections into the NAc shell of male and female Long-Evans rats that drank under the intermittent-access procedure, we found that the KOR agonist, U50,488, had no effect on ethanol drinking when injected into the middle NAc shell, but that it promoted intake in males and high-drinking females in the caudal NAc shell and high-drinking females in the rostral shell, and decreased intake in males and low-drinking females in the rostral shell. Conversely, injection of the KOR antagonist, nor-binaltorphimine, stimulated ethanol drinking in low-drinking females when injected into the rostral NAc shell and decreased drinking in high-drinking females when injected into the caudal NAc shell. These effects of KOR activity were substance-specific, as U50,488 did not affect sucrose intake. Using quantitative real-time PCR, we found that baseline gene expression of the KOR was higher in the rostral compared to caudal NAc shell, but that this was upregulated in the rostral shell with a history of ethanol drinking. Our findings have important clinical implications, demonstrating that KOR stimulation in the NAc shell can affect ethanol drinking, but that this depends on NAc subregion, subject sex, and ethanol intake level, and suggesting that this may be due to differences in KOR expression.

3.
Alcohol Clin Exp Res (Hoboken) ; 47(6): 1027-1038, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37042026

ABSTRACT

The dynorphin (DYN)/kappa opioid receptor (KOR) system has increasingly been investigated as a possible pharmacotherapeutic target for alcohol use disorder, but findings on the direction of its effects have been mixed. Activation of KORs by DYN has been shown to elicit dysphoric effects, and the DYN/KOR system has canonically been considered particularly important in driving alcohol intake through negative reinforcement in dependent states. However, this review also highlights its activity in opposing the positive reinforcement that drives alcohol intake at earlier stages. Both DYN and KORs are concentrated in the extended amygdala, a set of interconnected regions that includes the bed nucleus of the stria terminalis, central nucleus of the amygdala, and nucleus accumbens shell. This review focuses on the role of the DYN/KOR system in the extended amygdala in ethanol use. It begins by examining the effects of ethanol on the expression of DYN/KOR in the extended amygdala, expression of DYN/KOR in alcohol-preferring and alcohol-avoiding animals, and the effects of knocking out DYN/KOR genes on ethanol intake. Then, it examines the effects on ethanol use in both dependent and nondependent states from systemic pharmacological manipulations of DYN/KOR and from specific manipulation of this system in regions of the extended amygdala. We propose that greater expression and binding of DYN/KOR, by reducing the positive reinforcement that drives early stages of intake, initially acts to prevent the escalation of ethanol drinking. However, prolonged, binge-like, or intermittent ethanol intake enhances levels of DYN/KOR in the extended amygdala such that the system ultimately facilitates the negative reinforcement that drives later stages of ethanol drinking. This review highlights the potential of the DYN/KOR system as a target that can affect different outcomes across different stages of ethanol drinking and the development of alcohol use disorder.

4.
Addict Neurosci ; 52023 Mar.
Article in English | MEDLINE | ID: mdl-36798694

ABSTRACT

Males and females exhibit differences in motivated and affective behavior; however, the neural substrates underlying these differences remain poorly understood. In the paraventricular nucleus of the thalamus (PVT), sex-related differences in neuronal activity have been identified in response to motivated behavior tasks and affective challenges. Within the PVT, the neuropeptide, pituitary adenylate cyclase-activating polypeptide (PACAP), is highly expressed and is also involved in motivated and affective behavior. The purpose of this study was to compare the expression of PACAP mRNA and peptide in the PVT of males and females. Analysis with quantitative real-time PCR in mice revealed that females had significantly higher levels of PACAP mRNA than males in the whole PVT, but no differences in the neuropeptides enkephalin or corticotropin releasing factor (CRF) in this brain region. While in rats, females demonstrated a trend for greater gene expression than males in the anterior/middle and middle/posterior PVT, they again showed no differences in enkephalin or CRF. Analysis with immunofluorescent histochemistry revealed that female mice had significantly more PACAP-containing cells than males as a function of area throughout the PVT, and that female rats had significantly more PACAP-27 and PACAP-38-containing cells than males, both as a percentage of total cells and as a function of PVT area. For PACAP-27, this specifically occurred in the anterior PVT, and for PACAP-38, it occurred throughout the anterior, middle, and posterior PVT. These results suggest that sex-related differences in PVT PACAP may underly some of the established sex-related differences in motivated and affective behavior.

5.
Alcohol Clin Exp Res ; 46(7): 1282-1293, 2022 07.
Article in English | MEDLINE | ID: mdl-35491472

ABSTRACT

BACKGROUND: While men in the United States consume more alcohol than women, rates of drinking are converging. Nevertheless, females remain underrepresented in preclinical alcohol research. Here, we examined rats' sex-related differences in patterns of ethanol (EtOH) drinking and the effects of this drinking on exploratory and anxiety-like behavior. METHODS: Adult male and female Long-Evans rats were given 20% ethanol under the intermittent-access two-bottle-choice paradigm. Their intake was measured daily for the first 7 weeks. During the eighth week, intake was measured over the 24 h of daily access. During the ninth week, they, along with EtOH-naive controls, were tested prior to daily access in a novel chamber, light-dark box, and hole board apparatus. During the tenth week, blood ethanol concentration (BEC) was assessed after 30 to 40 min of access. RESULTS: Females overall demonstrated higher ethanol intake and preference across all access weeks than males, although only half of females drank significantly more than males. Across 24 h of daily access, both sexes had their highest intake in the first 30 min and their lowest in the middle of the light phase of the light/dark cycle. Despite their greater ethanol intake, females did not show significantly different BECs than males. In behavioral tests, females showed less vertical time in a novel activity chamber, more movement between chambers in a light-dark box, and more nose pokes in a hole-board apparatus than males. While a history of ethanol drinking led to a trend for lower vertical time in the activity chamber and greater chamber entries in the light-dark box, the effects were not sex-dependent. CONCLUSIONS: These results suggest that female and male rats could both be tested for acute effects of ethanol after 30 min of daily access, but that nuanced considerations are needed in the design of these experiments and the interpretation of their findings.


Subject(s)
Alcohol Drinking , Sex Characteristics , Animals , Anxiety , Ethanol/pharmacology , Female , Humans , Male , Rats , Rats, Long-Evans
7.
Addict Biol ; 26(3): e12972, 2021 05.
Article in English | MEDLINE | ID: mdl-33020973

ABSTRACT

While limited research has implicated the neuropeptide, pituitary adenylate cyclase-activating polypeptide (PACAP), in problematic alcohol use, the brain regions and isoforms involved in this effect remain to be determined. One region that has been found both to exhibit PACAP binding and, separately, to be involved in ethanol drinking is the nucleus accumbens (NAc). Thus, this study sought to characterize the effect of the PACAP isoforms in the NAc on ethanol drinking under the intermittent-access two-bottle-choice paradigm, in male and female Long-Evans rats. With microinjection into the medial NAc shell, PACAP-27 but not PACAP-38 was found to dose-dependently reduce binge-like ethanol drinking. In contrast, the PACAP receptor antagonist, PACAP (6-27), but not PACAP (6-38), enhanced ethanol drinking. This effect of PACAP was substance specific, as neither isoform in the NAc shell affected binge-like sucrose drinking. It was also anatomically specific, as PACAP-38 rather than PACAP-27 suppressed ethanol drinking when injected into the NAc core, and PACAP-27 instead enhanced drinking when injected into the caudal third of the medial NAc shell. Finally, while PACAP-38 in the NAc shell affected stress-related exploratory behavior, reducing time spent in the light chamber of a light-dark box, PACAP-27 did not significantly affect behavior in a light-dark box or open field. Together, these results, showing that PACAP-27 in the NAc shell attenuates binge-like ethanol drinking without affecting select stress-related behaviors, suggest that compounds related to this PACAP isoform should be investigated as potential novel therapeutics for the treatment of alcohol use disorder.


Subject(s)
Alcohol Drinking/drug therapy , Nucleus Accumbens/drug effects , Pituitary Adenylate Cyclase-Activating Polypeptide/administration & dosage , Animals , Female , Male , Microinjections , Protein Isoforms , Rats , Rats, Long-Evans
8.
Neuropharmacology ; 181: 108341, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33011200

ABSTRACT

Neural circuit engagement within the nucleus accumbens (NAc) shell is implicated in the regulation of both negative and positive affect. Classically, the dynorphin/kappa opioid receptor (KOR) system in the NAc was believed to promote aversion, while dopamine was viewed as interacting with reward behavior, and KOR activation was known to inhibit dopamine release. Recently, however, both the KOR and dopamine systems have, separately, been shown to have differential effects across the rostro-caudal axis of the NAc shell on hedonic responses. Whether or not this is due to interactions between KORs and dopamine, and if it extends to anxiety-like or approach-avoidance behaviors, remains to be determined. In this study, we examined in rats the relationship between the KOR and dopamine systems in both the rostral and caudal NAc shell using ex vivo fast scan cyclic voltammetry and the impact of KOR activation on affective behavior using exploration-based tasks. We report here that activation of KORs in the caudal NAc shell significantly inhibits dopamine release, stimulates rearing behavior in a novel environment, increases anxiety-like or avoidance behavior, and reduces locomotor activity. In contrast, activation of KORs in the rostral NAc shell inhibits dopamine release to a lesser extent and instead reduces anxiety-like behavior or increases approach behavior. Taken together, these results indicate that there is heterogeneity across the rostro-caudal axis of the NAc shell in the effects of KOR stimulation on affective behaviors, and they suggest that this might be due to differences in KOR control over dopamine release.


Subject(s)
Anxiety/psychology , Behavior, Animal/drug effects , Dopamine/metabolism , Nucleus Accumbens/drug effects , Receptors, Opioid, kappa/drug effects , 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology , Affect , Animals , Avoidance Learning/drug effects , Brain/pathology , Dynorphins/metabolism , Exploratory Behavior/drug effects , Female , Male , Motor Activity/drug effects , Rats , Rats, Long-Evans , Reward
SELECTION OF CITATIONS
SEARCH DETAIL
...