Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(21)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38828812

ABSTRACT

CNDOL is an a priori, approximate Fockian for molecular wave functions. In this study, we employ several modes of singly excited configuration interaction (CIS) to model molecular excitation properties by using four combinations of the one electron operator terms. Those options are compared to the experimental and theoretical data for a carefully selected set of molecules. The resulting excitons are represented by CIS wave functions that encompass all valence electrons in the system for each excited state energy. The Coulomb-exchange term associated to the calculated excitation energies is rationalized to evaluate theoretical exciton binding energies. This property is shown to be useful for discriminating the charge donation ability of molecular and supermolecular systems. Multielectronic 3D maps of exciton formal charges are showcased, demonstrating the applicability of these approximate wave functions for modeling properties of large molecules and clusters at nanoscales. This modeling proves useful in designing molecular photovoltaic devices. Our methodology holds potential applications in systematic evaluations of such systems and the development of fundamental artificial intelligence databases for predicting related properties.

2.
J Chem Phys ; 160(24)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38920134

ABSTRACT

Within the framework of natural orbital functional theory, having a convenient representation of the occupation numbers and orbitals becomes critical for the computational performance of the calculations. Recognizing this, we propose an innovative parametrization of the occupation numbers that takes advantage of the electron-pairing approach used in Piris natural orbital functionals through the adoption of the softmax function, a pivotal component in modern deep-learning models. Our approach not only ensures adherence to the N-representability of the first-order reduced density matrix (1RDM) but also significantly enhances the computational efficiency of 1RDM functional theory calculations. The effectiveness of this alternative parameterization approach was assessed using the W4-17-MR molecular set, which demonstrated faster and more robust convergence compared to previous implementations.

3.
J Chem Phys ; 160(20)2024 May 28.
Article in English | MEDLINE | ID: mdl-38775739

ABSTRACT

In the past decade, natural orbital functional (NOF) approximations have emerged as prominent tools for characterizing electron correlation. Despite their effectiveness, these approaches, which rely on natural orbitals and their associated occupation numbers, often require hybridization with other methods to fully account for all correlation effects. Recently, a global NOF (GNOF) has been proposed [Piris, Phys. Rev. Lett. 127, 233001 (2021)] to comprehensively address both dynamic and static correlations. This study evaluates the performance of GNOF on strongly correlated model systems, including comparisons with highly accurate Full Configuration Interaction calculations for hydrogen atom clusters in one, two, and three dimensions. Additionally, the investigation extends to a BeH2 reaction, involving the insertion of a beryllium atom into a hydrogen molecule along a C2v pathway. According to the results obtained using GNOF, consistent behavior is observed across various correlation regions, encompassing a range of occupations and orbital schemes. Furthermore, distinctive features are identified when varying the dimensionality of the system.

4.
J Chem Theory Comput ; 20(5): 2140-2151, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38353418

ABSTRACT

In this work, we explore the use of Piris natural orbital functionals (PNOFs) to calculate excited-state energies by coupling their reconstructed second-order reduced density matrix with the extended random-phase approximation (ERPA). We have named the general method PNOF-ERPA, and specific approaches are referred to as PNOF-ERPA0, PNOF-ERPA1, and PNOF-ERPA2, according to the way the excitation operator is built. The implementation has been tested in the first excited states of H2, HeH+, LiH, Li2, and N2 showing good results compared to the configuration interaction (CI) method. As expected, an increase in accuracy is observed on going from ERPA0 to ERPA1 and ERPA2. We also studied the effect of electron correlation included by PNOF5, PNOF7, and the recently proposed global NOF (GNOF) on the predicted excited states. PNOF5 appears to be good and may even provide better results in very small systems, but including more electron correlation becomes important as the system size increases, where GNOF achieves better results. Overall, the extension of PNOF to excited states has been successful, making it a promising method for further applications.

5.
J Chem Phys ; 160(7)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38364005

ABSTRACT

This work combines for the first time ab initio molecular dynamics (AIMD) within the Born-Oppenheimer approximation with a global natural orbital functional (GNOF), an approximate functional of the one-particle reduced density matrix. The most prominent feature of GNOF-AIMD is its ability to display the real-time evolution of natural orbitals, providing detailed information on the time-dependent electronic structure of complex systems and processes, including reactive collisions. The quartet ground-state reaction N(4S) + H2(1Σ) → NH(3Σ) + H(2S) is taken as a validation test. Collision energy influences on integral cross sections for different initial rovibrational states of H2 and rotational-state distributions of the NH product are discussed, showing a good agreement with previous high-quality theoretical results.

6.
J Chem Phys ; 158(8): 084110, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36859086

ABSTRACT

This work assesses the performance of the recently proposed global natural orbital functional (GNOF) against the charge delocalization error. GNOF provides a good balance between static and dynamic electronic correlations leading to accurate total energies while preserving spin, even for systems with a highly multi-configurational character. Several analyses were applied to the functional, namely, (i) how the charge is distributed in super-systems of two fragments, (ii) the stability of ionization potentials while increasing the system size, and (iii) potential energy curves of a neutral and charged diatomic system. GNOF was found to practically eliminate the charge delocalization error in many of the studied systems or greatly improve the results obtained previously with PNOF7.

7.
J Chem Theory Comput ; 19(1): 211-220, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36579972

ABSTRACT

The relative stability of the singlet, triplet, and quintet spin states of iron(II) porphyrin (FeP) represents a challenging problem for electronic structure methods. While it is currently accepted that the ground state is a triplet, multiconfigurational wave function-based methods predict a quintet, and density functional approximations vary between triplet and quintet states, leading to a prediction that highly depends on the features of the method employed. The recently proposed Global Natural Orbital Functional (GNOF) aims to provide a balanced treatment between static and dynamic correlation, and together with the previous Piris Natural Orbital Functionals (PNOFs), allowed us to explore the importance of each type of correlation in the stability order of the states of FeP with a method that conserves the spin of the system. It is noteworthy that GNOF correlates all electrons in all available orbitals for a given basis set; in the case of the FeP with a double-ζ basis set as used in this work, this means that GNOF can properly correlate 186 electrons in 465 orbitals, significantly increasing the sizes of systems amenable to multiconfigurational treatment. Results show that PNOF5, PNOF7s, and PNOF7 predict the quintet to have a lower energy than the triplet state; however, the addition of dynamic correlation via second-order Møller-Plesset corrections (NOF-MP2) turns the triplet state to be lower than the quintet state, a prediction also reproduced by GNOF that incorporates much more dynamic correlation than its predecessors.


Subject(s)
Iron , Porphyrins , Iron/chemistry , Porphyrins/chemistry , Electrons , Ferrous Compounds/chemistry
8.
J Chem Phys ; 156(21): 214102, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35676141

ABSTRACT

This work assesses the reliability of the recently proposed [M. Piris, Phys. Rev. Lett. 127, 233001 (2021)] global natural orbital functional (GNOF) in the treatment of the strong electron correlation regime. First, we use an H10 benchmark set of four hydrogen model systems of different dimensionalities and distinctive electronic structures: a 1D chain, a 2D ring, a 2D sheet, and a 3D close-packed pyramid. Second, we study two paradigmatic models for strongly correlated Mott insulators, namely, a 1D H50 chain and a 4 × 4 × 4 3D H cube. We show that GNOF, without hybridization to other electronic structure methods and free of tuned parameters, succeeds in treating weak and strong correlation in a more balanced way than the functionals that have preceded it.

9.
Phys Rev Lett ; 127(23): 233001, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34936779

ABSTRACT

The current work presents a natural orbital functional (NOF) for electronic systems with any spin value independent of the external potential being considered, that is, a global NOF (GNOF). It is based on a new two-index reconstruction of the two-particle reduced density matrix for spin multiplets. The emergent functional describes the complete intrapair electron correlation, and the correlation between orbitals that make up both the pairs and the individual electrons. The interorbital correlation is composed of static and dynamic terms. The concept of dynamic part of the occupation numbers is introduced. To evaluate the accuracy achieved with the GNOF, calculation of a variety of properties is presented. They include the total energies and energy differences between the ground state and the lowest-lying excited state with different spin of atoms from H to Ne, ionization potentials of the first-row transition-metal atoms (Sc-Zn), and the total energies of a selected set of 55 molecular systems in different spin states. The GNOF is also applied to the homolytic dissociation of selected diatomic molecules in different spin states and to the rotation barrier of ethylene, both paradigmatic cases of systems with significant multiconfigurational character. The values obtained agree with those reported at high level of theory and experimental data.

10.
J Chem Theory Comput ; 17(12): 7562-7574, 2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34806362

ABSTRACT

We develop a new family of electronic structure methods for capturing at the same time the dynamic and nondynamic correlation effects. We combine the natural orbital functional theory (NOFT) and many-body perturbation theory (MBPT) through a canonicalization procedure applied to the natural orbitals to gain access to any MBPT approximation. We study three different scenarios: corrections based on second-order Møller-Plesset (MP2), random-phase approximation (RPA), and coupled-cluster singles doubles (CCSD). Several chemical problems involving different types of electron correlation in singlet and multiplet spin states have been considered. Our numerical tests reveal that RPA-based and CCSD-based corrections provide similar relative errors in molecular dissociation energies (De) to the results obtained using a MP2 correction. With respect to the MP2 case, the CCSD-based correction improves the prediction, while the RPA-based correction reduces the computational cost.

11.
J Chem Phys ; 154(6): 064102, 2021 Feb 14.
Article in English | MEDLINE | ID: mdl-33588540

ABSTRACT

In this work, the required algebra to employ the resolution of the identity approximation within the Piris Natural Orbital Functional (PNOF) is developed, leading to an implementation named DoNOF-RI. The arithmetic scaling is reduced from fifth-order to fourth-order, and the memory scaling is reduced from fourth-order to third-order, allowing significant computational time savings. After the DoNOF-RI calculation has fully converged, a restart with four-center electron repulsion integrals can be performed to remove the effect of the auxiliary basis set incompleteness, quickly converging to the exact result. The proposed approach has been tested on cycloalkanes and other molecules of general interest to study the numerical results, as well as the speed-ups achieved by PNOF7-RI when compared with PNOF7.

12.
Phys Chem Chem Phys ; 23(4): 2953-2963, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33480904

ABSTRACT

Spectroscopic properties such as equilibrium distances, vibrational constants, rotational constants, dissociation energies, and excitation energies are calculated for nine heteronuclear diatomic molecules (PH, NF, NH, NO, CS, AlF, ClF, BeO and CF) using an interactive pair model (PNOF7s), that has been generalized for spin multiplet states, and its second order perturbation variant, NOF-MP2, which was also generalized for multiplets. The results obtained are compared with Complete Active Space (CASSCF) and Complete Active Space Perturbation Theory (CASPT2). It is shown that the potential energy curves provided by the PNOF functional for open shell diatomic molecules are in acceptable agreement with those from CASSCF and CASPT2. The spectroscopic constants depending at most on the second derivative of the potential energy are in good agreement with experiment, while those requiring the evaluation of the third and fourth derivatives show larger deviations from experiment and from those predicted by CASPT2. Thus, it is shown that the PNOF functional extension to multiplets is an alternative approach in predicting spectroscopic constants of molecules where static correlation plays an important role, like the open shell heteronuclear diatomic molecules studied in this work.

13.
J Chem Phys ; 153(4): 044101, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32752719

ABSTRACT

Analytic energy gradients with respect to nuclear motion are derived for non-singlet compounds in the natural orbital functional theory. We exploit the formulation for multiplets in order to obtain a simple formula valid for any many-electron system in its ground mixed state with a total spin S and all possible spin projection Sz values. We demonstrate that the analytic gradients can be obtained without resorting to linear response theory or involving iterative procedures. A single evaluation is required, so integral derivatives can be computed on-the-fly along the calculation, thus improving the effectiveness of screening by the Schwarz inequality. The results for small- and medium-sized molecules with many spin multiplicities are shown. Our results are compared with the experimental data and accurate theoretical equilibrium geometries.

14.
J Chem Phys ; 152(6): 064108, 2020 Feb 14.
Article in English | MEDLINE | ID: mdl-32061239

ABSTRACT

This work deals with the problem of strongly correlated electrons in two-dimensions. We give a reduced density matrix (RDM) based tool through which the ground-state energy is given as a functional of the natural orbitals and their occupation numbers. Specifically, the Piris Natural Orbital Functional 7 (PNOF7) is used for studying the 2D Hubbard model and hydrogen square lattices. The singlet ground-state is studied, as well as the doublet mixed quantum state obtained by extracting an electron from the system. Our method satisfies two-index necessary N-representability conditions of the two-particle RDM (2RDM) and guarantees the conservation of the total spin. We show the ability of PNOF7 to describe strong correlation effects in two-dimensional (2D) systems by comparing our results with the exact diagonalization, density matrix renormalization group (DMRG), and auxiliary-field quantum Monte Carlo calculations. PNOF7 overcomes variational 2RDM methods with two- and three-index positivity N-representability conditions, reducing computational cost to mean-field scaling. Consistent results are obtained for small and large systems up to 144 electrons, weak and strong correlation regimes, and many filling situations. Unlike other methods, there is no dependence on dimensionality in the results obtained with PNOF7 and no particular difficulties have been observed to converge PNOF7 away from half-filling. Smooth double occupancy of sites is obtained, regardless of the filling. Symmetric dissociation of 2D hydrogen lattices shows that long-range nondynamic correlation dramatically affects electron detachment energies. PNOF7 compares well with DMRG along the dissociation curve.

15.
J Phys Condens Matter ; 32(17): 17LT01, 2020 Apr 24.
Article in English | MEDLINE | ID: mdl-31952058

ABSTRACT

The one-particle reduced density matrix functional theory in its natural orbital functional (NOF) version is used to study strongly correlated electrons. We show the ability of the Piris NOF 7 (PNOF7) to describe non-dynamic correlation effects in one-dimensional (1D) systems. An extensive study of 1D systems that includes Hydrogen (H) chains and the 1D Hubbard model with periodic boundary conditions is provided. Different filling situations and large sizes with up to 122 electrons are considered. Compared to quasi-exact results, PNOF7 is accurate in different correlation regimes for the 1D Hubbard model even away from the half-filling, and maintains its accuracy when the system size increases. The symmetric and asymmetric dissociations of the linear H chain composed of 50 atoms are described to remark the importance of long-range interactions in presence of strong correlation effects. Our results compare remarkably well with those obtained at the density-matrix renormalization group level of theory.

16.
J Phys Condens Matter ; 31(16): 165501, 2019 Apr 24.
Article in English | MEDLINE | ID: mdl-30673638

ABSTRACT

Natural orbital functional theory is considered for systems with one or more unpaired electrons. An extension of the Piris natural orbital functional (PNOF) based on electron pairing approach is presented, specifically, we extend the independent pair model, PNOF5, and the interactive pair model PNOF7 to describe spin-uncompensated systems. An explicit form for the two-electron cumulant of high-spin cases is only taken into account, so that singly occupied orbitals with the same spin are solely considered. The rest of the electron pairs with opposite spins remain paired. The reconstructed two-particle reduced density matrix fulfills certain N-representability necessary conditions, as well as guarantees the conservation of the total spin. The theory is applied to model systems with strong non-dynamic (static) electron correlation, namely, the one-dimensional Hubbard model with periodic boundary conditions and hydrogen rings. For the latter, PNOF7 compares well with exact diagonalization results so the model presented here is able to provide a correct description of the strong-correlation effects.

17.
Article in English | MEDLINE | ID: mdl-29313829

ABSTRACT

There was an error when collecting the data in the results corresponding to PNOF7 for the homogeneous 4 sites square and 6 sites hexagone Hubbard models reported in the article. And also for MBB and CGA for the 10 sites Hubbard model including an Aubry-André potential.

18.
Phys Rev Lett ; 119(6): 063002, 2017 Aug 11.
Article in English | MEDLINE | ID: mdl-28949623

ABSTRACT

The current work presents a new single-reference method for capturing at the same time the static and dynamic electron correlation. The starting point is a determinant wave function formed with natural orbitals obtained from a new interacting-pair model. The latter leads to a natural orbital functional (NOF) capable of recovering the complete intrapair, but only the static interpair correlation. Using the solution of the NOF, two new energy functionals are defined for both dynamic (E^{dyn}) and static (E^{sta}) correlation. E^{dyn} is derived from a modified second-order Møller-Plesset perturbation theory (MP2), while E^{sta} is obtained from the static component of the new NOF. Double counting is avoided by introducing the amount of static and dynamic correlation in each orbital as a function of its occupation. As a result, the total energy is represented by the sum E[over ˜]_{HF}+E^{dyn}+E^{sta}, where E[over ˜]_{HF} is the Hartree-Fock energy obtained with natural orbitals. The new procedure called NOF-MP2 scales formally as O(M^{5}) (where M is the number of basis functions), and is applied successfully to the homolytic dissociation of a selected set of diatomic molecules, paradigmatic cases of near-degeneracy effects. The size consistency has been numerically demonstrated for singlets. The values obtained are in good agreement with the experimental data.

19.
Phys Chem Chem Phys ; 19(35): 24029-24041, 2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28832052

ABSTRACT

The energy usually serves as a yardstick in assessing the performance of approximate methods in computational chemistry. After all, these methods are mostly used for the calculation of the electronic energy of chemical systems. However, computational methods should be also aimed at reproducing other properties, such strategy leading to more robust approximations with a wider range of applicability. In this study, we suggest a battery of ten tests with the aim to analyze density matrix functional approximations (DMFAs), including several properties that the exact functional should satisfy. The tests are performed on a model system with varying electron correlation, carrying a very small computational effort. Our results not only put forward a complete and exhaustive benchmark test for DMFAs, currently lacking, but also reveal serious deficiencies of existing approximations that lead to important clues in the construction of more robust DMFAs.

20.
J Chem Phys ; 146(1): 014102, 2017 Jan 07.
Article in English | MEDLINE | ID: mdl-28063441

ABSTRACT

The analytic energy gradients with respect to nuclear motion are derived for the natural orbital functional (NOF) theory. The resulting equations do not require resorting to linear-response theory, so the computation of NOF energy gradients is analogous to gradient calculations at the Hartree-Fock level of theory. The structures of 15 spin-compensated systems, composed of first- and second-row atoms, are optimized employing the conjugate gradient algorithm. As functionals, two orbital-pairing approaches were used, namely, the fifth and sixth Piris NOFs (PNOF5 and PNOF6). For the latter, the obtained equilibrium geometries are compared with coupled cluster singles and doubles calculations and accurate empirical data.

SELECTION OF CITATIONS
SEARCH DETAIL
...