Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Biol Ther ; 15(7): 938-50, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24755707

ABSTRACT

Glioblastoma multiforme (GBM) is the most common primary brain tumor and is among the deadliest of human cancers. Dysregulation of microRNAs (miRNAs) expression is an important step in tumor progression as miRNAs can act as tumor suppressors or oncogenes and may affect cell sensitivity to chemotherapy. Whereas the oncogenic miR21 has been shown to be overexpressed in gliomas, the expression and function of the tumor-supressor miR200a in GBMs remains unknown. In this study, we show that miR21 is upregulated in grade IV (GBMs) vs. grade II-III (LGs) gliomas, confirming that miR21 expression level is correlated with tumor grade, and that it may be considered as a marker of tumor progression. Conversely, miR200a is demonstrated for the first time to be downregulated in GBMs compared with LGs, and overexpression of miR200a in GBM cells is shown to promote TMZ-sensitivity. Interestingly, miR200a but not miR21 expression level is significantly higher in TMZ-responsive vs. -unresponsive tumoral glial cells in primary culture. Furthermore, miR200a appears negatively correlated with the expression of the DNA repair enzyme O (6)-methylguanine methyltransferase (MGMT), and the inhibition of MGMT activity results in an increase of miR200a expression in GBM cells. Taken together, these data strongly suggest that miR200a is likely to act as a crucial antitumoral factor regarding glioma progression. Interplay between miR200a and MGMT should be considered as potential mechanism involved in therapeutic response.


Subject(s)
Antineoplastic Agents, Alkylating/pharmacology , Brain Neoplasms/pathology , DNA Modification Methylases/metabolism , DNA Repair Enzymes/metabolism , Dacarbazine/analogs & derivatives , Drug Resistance, Neoplasm , Glioblastoma/pathology , MicroRNAs/metabolism , Tumor Suppressor Proteins/metabolism , Adult , Aged , Aged, 80 and over , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Dacarbazine/pharmacology , Female , Glioblastoma/metabolism , Humans , Male , MicroRNAs/genetics , Middle Aged , Neoplasm Grading , Temozolomide , Transcriptome
2.
J Agric Food Chem ; 54(23): 8749-55, 2006 Nov 15.
Article in English | MEDLINE | ID: mdl-17090117

ABSTRACT

Vitamin E and carotenoids are fat-soluble microconstituents that may exert beneficial effects in humans, including protection against cancer, cardiovascular diseases, and age-related eye diseases. Their bioavailability is influenced by various factors including food matrix, formulation, and food processing. Since human studies are labor-intensive, time-consuming, and expensive, the in vitro model used in this study is increasingly being used to estimate bioaccessibility of these microconstituents. However, the ability of this model to predict bioavailability in a healthy human population has not yet been verified. The first aim of this study was to validate this model by comparing model-derived bioaccessibility data with (i) human-derived bioaccessibility data and (ii) published mean bioavailability data reported in studies involving healthy humans. The second aim was to use it to measure alpha- and gamma-tocopherol, beta-carotene, lycopene, and lutein bioaccessibility from their main dietary sources. Bioaccessibility as assessed with the in vitro model was well correlated with human-derived bioaccessibility values (r = 0.90, p < 0.05), as well as relative mean bioavailability values reported in healthy human groups (r = 0.98, p < 0.001). The bioaccessibility of carotenoids and vitamin E from the main dietary sources was highly variable, ranging from less than 0.1% (beta-carotene from raw tomato) to almost 100% (alpha-tocopherol from white bread). Bioaccessibility was dependent on (i) microconstituent species (lutein > beta-carotene and alpha-carotene > lycopene and alpha-tocopherol generally > gamma-tocopherol), (ii) food matrix, and (iii) food processing.


Subject(s)
Diet , Vitamin E/pharmacokinetics , Biological Availability , Carotenoids/metabolism , Carotenoids/pharmacokinetics , Digestion , Humans , In Vitro Techniques , Vitamin E/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...