Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
ACS Omega ; 3(8): 9945-9955, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-31459123

ABSTRACT

Sodium-ion batteries are promising futuristic large-scale energy-storage devices because of the abundance and low cost of sodium. However, the development and commercialization of the sodium-ion battery solely depends on the use of high-capacity electrode materials. Among the various metal oxides, SnO2 has a high theoretical specific capacity for sodium-ion battery. However, the enormous volume expansion and low electrical conductivity of SnO2 hinder its capability to reach the predicted theoretical value. Although different nanostructured designs of electrode materials like SnO2 nanocomposites have been studied, the effects of other cell components like electrolyte and binder on the specific capacity and cyclic stability are yet to be understood. In the present study, we have investigated the synergistic effect of electrolyte and binder on the performance enhancement of SnO2 supported on the intertwined network structure of reduced graphene oxide partially open multiwalled carbon nanotube hybrid as anode in sodium-ion battery. Our result shows that sodium carboxyl methyl cellulose and ethylene carbonate/diethyl carbonate as the electrolyte solvent offers a high specific capacity of 688 mAh g-1 and a satisfactory cyclic stability for 500 cycles. This is about 56% enhancement in specific capacity compared to the use of poly(vinylidene fluoride) binder and propylene carbonate as the electrolyte solvent. The present study provides a better understanding of the synergistic role of electrolyte and binder for the development of metal-oxide-based electrode materials for the advancement of the commercialization of sodium-ion battery.

2.
Mater Sci Eng C Mater Biol Appl ; 78: 1231-1245, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28575962

ABSTRACT

Sensor technology for the rapid detection of the analytes with high sensitivity and selectivity has several challenges. Despite the challenges, colorimetric sensors have been widely accepted for its high sensitive and selective response towards various analytes. In this review, colorimetric sensors for the detection of biomolecules like protein, DNA, pathogen and chemical compounds like heavy metal ions, toxic gases and organic compounds have been elaborately discussed. The visible sensing mechanism based on Surface Plasmon Resonance (SPR) using metal nanoparticles like Au, Ag, thin film interference using SiO2 and colorimetric array-based technique have been highlighted. The optical property of metal nanoparticles enables a visual color change during its interaction with the analytes owing to the dispersion and aggregation of nanoparticles. Recently, colorimetric changes using silica substrate for detection of protein and small molecules by thin film interference as a visible sensing mechanism has been developed without the usage of fluorescent or radioisotopes labels. Multilayer of biomaterials were used as a platform where reflection and interference of scattering light occur due to which color change happens leading to rapid sensing. Colorimetric array-based technique for the detection of organic compounds using chemoresponsive dyes has also been focused wherein the interaction of the analytes with the substrate coated with chemoresponsive dyes gives colorimetric change.


Subject(s)
Colorimetry , Gold , Metal Nanoparticles , Silicon Dioxide , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...