Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Rev E ; 108(5-2): 055102, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38115477

ABSTRACT

Two-dimensional numerical simulations for the Rayleigh-Taylor instability in an elastic-plastic medium are presented. Recent predictions of the theory regarding the asymmetric growth of peaks and valleys during the linear phase of the instability evolution are confirmed. Extension to the nonlinear regime reveals singular features, such as the long delay in achieving the nonlinear saturation and an intermediate phase with growth rate larger than the classical one.

2.
Phys Rev E ; 107(3-2): 035105, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37073073

ABSTRACT

The generation of spikes and bubbles, a typical characteristic of the nonlinear regime in the Rayleigh-Taylor instability, is found to occur as well during the linear regime in an elastic-plastic solid medium caused, however, by a very different mechanism. This singular feature originates in the differential loads at different locations of the interface, which makes that the transition from the elastic to the plastic regime takes place at different times, thus producing an asymmetric growth of peaks and valleys that rapidly evolves in exponentially growing spikes, while bubbles can also grow exponentially at a lower rate.

3.
Phys Rev E ; 106(1-2): 015109, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35974612

ABSTRACT

Convergence effects on the perturbation growth of an imploding surface separating two nonideal material media (elastic and viscous media) are analyzed in the case of a cylindrical implosion in both the Rayleigh-Taylor stable and unstable configurations. In the stable configuration, the perturbation damping effect due to angular momentum conservation becomes destroyed for sufficiently high values of the elastic modulus or of the viscosity of the media. For the unstable configuration, Rayleigh-Taylor instability can be suppressed by the elasticity or mitigated by the viscosity, but without practically affecting the perturbation growth due to the geometrical convergence. However, the convergence effects manifest themselves in a manner somewhat different from the classical Bell-Plesset effect by making the process more sensitive to the media compressibility than in the case involving ideal media.

4.
Phys Rev E ; 104(3-2): 035102, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34654193

ABSTRACT

The boundaries of stability are determined for the Rayleigh-Taylor instability at a cylindrical interface between an ideal fluid in the interior and a heavier elastic-plastic solid in the outer region. The stability maps are given in terms of the maximum dimensionless initial amplitude ξ_{th}^{*} that can be tolerated for the interface to remain stable, for any particular value of the dimensionless radius B of the surface, and for the different spatial modes m of the perturbations. In general, for the smallest dimensionless radius and larger modes m, the interface remains stable for larger values of ξ_{th}^{*}. In particular, for m>1 and B→0, it turns out ξ_{th}^{*}→1, and a cylindrical geometry equivalent to Drucker's criterion is found, which indeed ends up being independent of the interface geometry.

5.
Phys Rev E ; 103(2-1): 023105, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33735991

ABSTRACT

The linear evolution of the incompressible Rayleigh-Taylor instability for the interface between an elastic-plastic slab medium and a lighter semi-infinite ideal fluid beneath the slab is developed for the case in which slab is attached to a rigid wall at the top surface. The theory yields the maps for the stability in the space determined by the initial perturbation amplitude and wavelength, as well as for the transition boundary from the elastic to the plastic regimes for arbitrary thicknesses of the slab and density contrasts between the media. In particular, an approximate but very accurate scaling law is found for the minimum initial perturbation amplitude required for instability and for the corresponding perturbation wavelength at which it occurs. These results allows for an interpretation of the recent experiments by Maimouni et al. [Phys. Rev. Lett. 116, 154502 (2016)PRLTAO0031-900710.1103/PhysRevLett.116.154502].

6.
Phys Rev E ; 101(2-1): 023202, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32168599

ABSTRACT

The work presented in this paper shows with the help of two-dimensional hydrodynamic simulations that intense heavy-ion beams are a very efficient tool to induce high energy density (HED) states in solid matter. These simulations have been carried out using a computer code BIG2 that is based on a Godunov-type numerical algorithm. This code includes ion beam energy deposition using the cold stopping model, which is a valid approximation for the temperature range accessed in these simulations. Different phases of matter achieved due to the beam heating are treated using a semiempirical equation-of-state (EOS) model. To take care of the solid material properties, the Prandl-Reuss model is used. The high specific power deposited by the projectile particles in the target leads to phase transitions on a timescale of the order of tens of nanosecond, which means that the sample material achieves thermodynamic equilibrium during the heating process. In these calculations we use Pb as the sample material that is irradiated by an intense uranium beam. The beam parameters including particle energy, focal spot size, bunch length, and bunch intensity are considered to be the same as the design parameters of the ion beam to be generated by the SIS100 heavy-ion synchrotron at the Facility for Antiprotons and Ion Research (FAIR), at Darmstadt. The purpose of this work is to propose experiments to measure the EOS properties of HED matter including studies of the processes of phase transitions at the FAIR facility. Our simulations have shown that depending on the specific energy deposition, solid lead will undergo phase transitions leading to an expanded hot liquid state, two-phase liquid-gas state, or the critical parameter regime. In a similar manner, other materials can be studied in such experiments, which will be a very useful addition to the knowledge in this important field of research.

7.
Phys Rev E ; 100(6-1): 063104, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31962442

ABSTRACT

The linear theory of the incompressible Rayleigh-Taylor instability in elastic-plastic solid slabs is developed on the basis of the simplest constitutive model consisting in a linear elastic (Hookean) initial stage followed by a rigid-plastic phase. The slab is under the action of a constant acceleration, and it overlays a very thick ideal fluid. The boundaries of stability and plastic flow are obtained by assuming that the instability is dominated by the average growth of the perturbation amplitude and neglecting the effects of the higher oscillation frequencies during the stable elastic phase. The theory yields complete analytical expressions for such boundaries for arbitrary Atwood numbers and thickness of the solid slabs.

8.
Phys Rev E ; 97(4-1): 043106, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29758639

ABSTRACT

The linear theory of Rayleigh-Taylor instability is developed for the case of a viscous fluid layer accelerated by a semi-infinite viscous fluid, considering that the top interface is a free surface. Effects of the surface tensions at both interfaces are taken into account. When viscous effects dominate on surface tensions, an interplay of two mechanisms determines opposite behaviors of the instability growth rate with the thickness of the heavy layer for an Atwood number A_{T}=1 and for sufficiently small values of A_{T}. In the former case, viscosity is a less effective stabilizing mechanism for the thinnest layers. However, the finite thickness of the heavy layer enhances its viscous effects that, in general, prevail on the viscous effects of the semi-infinite medium.

9.
Phys Rev E ; 95(5-1): 053108, 2017 May.
Article in English | MEDLINE | ID: mdl-28618602

ABSTRACT

A physical model has been developed for the linear Rayleigh-Taylor instability of a finite-thickness elastic slab laying on top of a semi-infinite ideal fluid. The model includes the nonideal effects of elasticity as boundary conditions at the top and bottom interfaces of the slab and also takes into account the finite transit time of the elastic waves across the slab thickness. For Atwood number A_{T}=1, the asymptotic growth rate is found to be in excellent agreement with the exact solution [Plohr and Sharp, Z. Angew. Math. Mech. 49, 786 (1998)10.1007/s000330050121], and a physical explanation is given for the reduction of the stabilizing effectiveness of the elasticity for the thinner slabs. The feedthrough factor is also calculated.

10.
Phys Rev E ; 96(6-1): 063115, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29347423

ABSTRACT

We develop the linear theory for the asymptotic growth of the incompressible Rayleigh-Taylor instability of an accelerated solid slab of density ρ_{2}, shear modulus G, and thickness h, placed over a semi-infinite ideal fluid of density ρ_{1}<ρ_{2}. It extends previous results for Atwood number A_{T}=1 [B. J. Plohr and D. H. Sharp, Z. Angew. Math. Phys. 49, 786 (1998)ZAMPA80044-227510.1007/s000330050121] to arbitrary values of A_{T} and unveil the singular feature of an instability threshold below which the slab is stable for any perturbation wavelength. As a consequence, an accelerated elastic-solid slab is stable if ρ_{2}gh/G≤2(1-A_{T})/A_{T}.

SELECTION OF CITATIONS
SEARCH DETAIL
...