Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Allergy ; 5: 1439303, 2024.
Article in English | MEDLINE | ID: mdl-39086886

ABSTRACT

The early microbial colonization of human mucosal surfaces is essential for the development of the host immune system. Already during pregnancy, the unborn child is prepared for the postnatal influx of commensals and pathogens via maternal antibodies, and after birth this protection is continued with antibodies in breast milk. During this critical window of time, which extends from pregnancy to the first year of life, each encounter with a microorganism can influence children's immune response and can have a lifelong impact on their life. For example, there are numerous links between the development of allergies and an altered gut microbiome. However, the exact mechanisms behind microbial influences, also extending to how viruses influence host-microbe interactions, are incompletely understood. In this review, we address the impact of infants' first microbial encounters, how the immune system develops to interact with gut microbiota, and summarize how an altered immune response could be implied in allergies.

2.
Article in English | MEDLINE | ID: mdl-39059595

ABSTRACT

Plasma-soluble (s)HLA-G and sHLA-E are immunoregulatory proteins that balance the activation of NKG2A+ immune cells. In lung-transplant recipients (LTRs), dysregulated NKG2A+ natural killer cell responses may result in high-level human cytomegalovirus (HCMV) replication as well as chronic lung allograft dysfunction (CLAD), and especially the development of rapidly deteriorating CLAD is associated with high mortality. We thus analyzed the kinetics and function of sHLA-G and sHLA-E in follow-up samples of N = 76 LTRs to evaluate whether these immunoregulatory proteins are associated with the risk for CLAD and high-level HCMV replication. Here, we demonstrate that rapidly deteriorating CLAD LTRs are hallmarked by continually low (<107 ng/ml) sHLA-G levels. In contrast, high sHLA-E levels were associated with the following development of high-level (>1,000 copies/ml) HCMV episodes. Thus, sHLA-G and sHLA-E may serve as novel biomarkers for the development of rapidly deteriorating CLAD and high-level HCMV replication in LTRs.

SELECTION OF CITATIONS
SEARCH DETAIL
...