Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Biology (Basel) ; 13(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38927295

ABSTRACT

The symbiotic interaction between leguminous and Bradyrhizobium sp. SUTN9-2 mainly relies on the nodulation process through Nod factors (NFs), while the type IV secretion system (T4SS) acts as an alternative pathway in this symbiosis. Two copies of T4SS (T4SS1 and T4SS2) are located on the chromosome of SUTN9-2. ΔT4SS1 reduces both nodule number and nitrogenase activity in all SUTN9-2 nodulating legumes. The functions of three selected genes (copG1, traG1, and virD21) within the region of T4SS1 were examined. We generated deleted mutants and tested them in Vigna radiata cv. SUT4. ΔtraG1 and ΔvirD21 exhibited lower invasion efficiency at the early stages of root infection but could be recently restored. In contrast, ΔcopG1 completely hindered nodule organogenesis and nitrogenase activity in all tested legumes. ΔcopG1 showed low expression of the nodulation gene and ttsI but exhibited high expression levels of the T4SS genes, traG1 and trbE1. The secreted proteins from ΔT4SS1 were down-regulated compared to the wild-type. Although ΔcopG1 secreted several proteins after flavonoid induction, T3SS (nopP and nopX) and the C4-dicarboxylate transporter (dct) were not detected. These results confirm the crucial role of the copG1 gene as a novel key regulator in the symbiotic relationship between SUTN9-2 and legumes.

2.
Microbiol Spectr ; : e0194723, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37681944

ABSTRACT

The functional significance of rpoN genes that encode two sigma factors in the Bradyrhizobium sp. strain DOA9 has been reported to affect colony formation, root nodulation characteristics, and symbiotic interactions with Aeschynomene americana. rpoN mutant strains are defective in cellular surface polysaccharide (CSP) production compared with the wild-type (WT) strain, and they accordingly exhibit smaller colonies and diminished symbiotic effectiveness. To gain deeper insights into the changes in CSP composition and the nodules of rpoN mutants, we employed synchrotron-based Fourier transform infrared (SR-FTIR) microspectroscopy and X-ray absorption spectroscopy. FTIR analysis of the CSP revealed the absence of specific components in the rpoN mutants, including lipids, carboxylic groups, polysaccharide-pyranose rings, and ß-galactopyranosyl residues. Nodules formed by DOA9WT exhibited a uniform distribution of lipids, proteins, and carbohydrates; mutant strains, particularly DOA9∆rpoNp:ΩrpoNc, exhibited decreased distribution uniformity and a lower concentration of C=O groups. Furthermore, Fe K-edge X-ray absorption near-edge structure and extended X-ray absorption fine structure analyses revealed deficiencies in the nitrogenase enzyme in the nodules of DOA9∆rpoNc and DOA9∆rpoNp:ΩrpoNc mutants; nodules from DOA9WT and DOA9∆rpoNp exhibited both leghemoglobin and the nitrogenase enzyme. IMPORTANCE This work provides valuable insights into how two rpoN genes affect the composition of cellular surface polysaccharides (CSPs) in Bradyrhizobium sp., which subsequently dictates root nodule chemical characteristics and nitrogenase production. We used advanced synchrotron methods, including synchrotron-based Fourier transform infrared (SR-FTIR) microspectroscopy and X-ray absorption spectroscopy (XAS), for the first time in this field to analyze CSP components and reveal the biochemical changes occurring within nodules. These cutting-edge techniques confer significant advantages by providing detailed molecular information, enabling the identification of specific functional groups, chemical bonds, and biomolecule changes. This research not only contributes to our understanding of plant-microbe interactions but also establishes a foundation for future investigations and potential applications in this field. The combined use of the synchrotron-based FTIR and XAS techniques represents a significant advancement in facilitating a comprehensive exploration of bacterial CSPs and their implications in plant-microbe interactions.

3.
Appl Environ Microbiol ; 89(6): e0004023, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37255432

ABSTRACT

There has been little study of the type IV secretion system (T4SS) of bradyrhizobia and its role in legume symbiosis. Therefore, broad host range Bradyrhizobium sp. SUTN9-2 was selected for study. The chromosome of Bradyrhizobium sp. SUTN9-2 contains two copies of the T4SS gene, homologous with the tra/trb operons. A phylogenetic tree of the T4SS gene traG was constructed, which exemplified its horizontal transfer among Bradyrhizobium and Mesorhizobium genera. They also showed similar gene arrangements for the tra/trb operons. However, the virD2 gene was not observed in Mesorhizobium, except M. oppotunistum WSM2075. Interestingly, the orientation of copG, traG, and virD2 cluster was unique to the Bradyrhizobium genus. The phylogenetic tree of copG, traG, and virD2 demonstrated that copies 1 and 2 of these genes were grouped in different clades. In addition, the derived mutant and complementation strains of T4SS were investigated in representative legumes Genistoids, Dalbergioids, and Millettiods. When T4SS copy 1 (T4SS1) was deleted, the nodule number and nitrogenase activity decreased. This supports a positive effect of T4SS1 on symbiosis. In addition, delayed nodulation was observed 7 dpi, which was restored by the complementation of T4SS1. Therefore, T4SS plays an important role in the symbiotic interaction between Bradyrhizobium sp. SUTN9-2 and its leguminous hosts. IMPORTANCE SUTN9-2 is a broad host range strain capable of symbiosis with several legumes. Two copies of T4SS clusters belonging to the tra/trb operon are observed on chromosomes with different gene arrangements. We use phylogenetic tree and gene annotation analysis to predict the evolution of the tra/trb operon of rhizobia. Our finding suggests that the gene encoding the T4SS gene among Bradyrhizobium and Mesorhizobium may have coevolution. In addition, Bradyrhizobium has a uniquely arranged copG, traG, and virD2 gene cluster. The results of T4SS1 gene deletion and complementation revealed its positive effect on nodulation. Therefore, T4SS seems to be another determinant for symbiosis. This is the first report on the role of T4SS in Bradyrhizobium symbiosis.


Subject(s)
Bradyrhizobium , Fabaceae , Symbiosis , Phylogeny , Bradyrhizobium/genetics , Type IV Secretion Systems , Vegetables
4.
Front Microbiol ; 14: 1131860, 2023.
Article in English | MEDLINE | ID: mdl-36876109

ABSTRACT

RpoN is an alternative sigma factor (sigma 54) that recruits the core RNA polymerase to promoters of genes. In bacteria, RpoN has diverse physiological functions. In rhizobia, RpoN plays a key role in the transcription of nitrogen fixation (nif) genes. The Bradyrhizobium sp. DOA9 strain contains a chromosomal (c) and plasmid (p) encoded RpoN protein. We used single and double rpoN mutants and reporter strains to investigate the role of the two RpoN proteins under free-living and symbiotic conditions. We observed that the inactivation of rpoNc or rpoNp severely impacts the physiology of the bacteria under free-living conditions, such as the bacterial motility, carbon and nitrogen utilization profiles, exopolysaccharide (EPS) production, and biofilm formation. However, free-living nitrogen fixation appears to be under the primary control of RpoNc. Interestingly, drastic effects of rpoNc and rpoNp mutations were also observed during symbiosis with Aeschynomene americana. Indeed, inoculation with rpoNp, rpoNc, and double rpoN mutant strains resulted in decreases of 39, 64, and 82% in the number of nodules, respectively, as well as a reduction in nitrogen fixation efficiency and a loss of the bacterium's ability to survive intracellularly. Taken together, the results show that the chromosomal and plasmid encoded RpoN proteins in the DOA9 strain both play a pleiotropic role during free-living and symbiotic states.

5.
Microbes Environ ; 38(1)2023.
Article in English | MEDLINE | ID: mdl-36935122

ABSTRACT

Cercospora leaf spot (CLS) is caused by Cercospora canescens and is one of the most important diseases of mungbean (Vigna radiata). Cercospora leaf spot may result in economic loss in production areas. The present study investigated the potential of Bacillus velezensis S141 as a biocontrol agent for C. canescens PAK1 growth on culture plates. Cell-free secretions from a dual culture of S141+PAK1 inhibited fungal growth more than those from a single culture of S141. The biocontrol efficiency of S141 against Cercospora leaf spot on mungbean was then evaluated by spraying. The disease severity of Cercospora leaf spot was significantly reduced in plants treated with S141, with a control efficiency of 83% after 2 days of infection. Comparative transcriptomics and qRT-PCR ana-lyses of S141 during C. canescens inhibition were performed to elucidate the antifungal mechanisms underlying its antifungal activity against Cercospora leaf spot. According to the differentially expressed genes, most up-regulated genes involved in the biosynthetic genes encoding enzymatic hydrolases, including protease, ß-glucanase, and N-acyl glucosaminase, were detected in strain S141 following its interaction. Moreover, genes related to secondary metabolites (surfactin, bacilysin, and bacillomycin D) were up-regulated. Collectively, these results suggest that S141 exhibited strong antifungal activity against C. canescens due to multiple enzymatic hydrolases and secondary metabolites. Therefore, the present study provides insights into the biological network responsible for the antifungal activity of B. velezensis S141 against C. canescens.


Subject(s)
Bacillus , Vigna , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Vigna/microbiology , Cercospora/metabolism , Bacillus/genetics , Plant Diseases/microbiology
6.
Microbes Environ ; 37(2)2022.
Article in English | MEDLINE | ID: mdl-35676049

ABSTRACT

The symbiotic properties of rhizobial bacteria are driven by the horizontal gene transfer of symbiotic genes, which are located in symbiosis islands or on plasmids. The symbiotic megaplasmid pDOA9 of Bradyrhizobium sp. DOA9, carrying the nod, nif, fix, and type three secretion system (T3SS) genes, has been conjugatively transferred to different Bradyrhizobium strains. In the present study, non-nodulating B. cosmicum S23321, which shows a close phylogenetic relationship with Bradyrhizobium sp. DOA9, but lacks symbiotic properties, was used to carry pDOA9 (annotated as chimeric S2:pDOA9). The results obtained showed that pDOA9 conferred symbiotic properties on S23321; however, nodulation phenotypes varied among the DOA9, chimeric ORS278:pDOA9, and S2:pDOA9 strains even though they all carried symbiotic pDOA9 plasmid. S23321 appeared to gain symbiotic nodulation from pDOA9 by processing nodulation genes and broadening the host range. The present results also showed the successful formation of active nodules in Arachis hypogaea (Dalbergoid) and Vigna radiata (Millitoid) by chimeric S2:pDOA9, while Crotalaria juncea (Genistoid) and Macroptilium atropurpureum (Millitoid) formed nodule-like structures. The formation of nodules and nodule-like structures occurred in a nod factor-dependent manner because the nod factor-lacking strain (S2:pDOA9ΩnodB) completely abolished nodulation in all legumes tested. Moreover, T3SS carried by S2:pDOA9 exerted negative effects on symbiosis with Crotalaria juncea, which was consistent with the results obtained on DOA9. T3SS exhibited symbiotic compatibility with V. radiata when nodulated by S23321. These outcomes implied that pDOA9 underwent changes during legume evolution that broadened host specificity and the compatibility of nodulation in a manner that was dependent on the chromosomal background of the recipient as well as legume host restrictions.


Subject(s)
Bradyrhizobium , Fabaceae , Bradyrhizobium/genetics , Fabaceae/microbiology , Phylogeny , Plant Root Nodulation/genetics , Plasmids/genetics , Root Nodules, Plant/microbiology , Symbiosis/genetics
7.
Bioresour Technol ; 347: 126732, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35074466

ABSTRACT

This study aimed to conduct a co-culture of a microalga and syntrophic actinomycetes to treat cassava a biogas effluent wastewater and enhance biodiesel production. Streptomyces thermocarboxydus strain BMI 10 produced the greatest effect on biomass production by Chlorella sorokiniana strain P21. Maximal algal biomass production and total lipid yield were increased when strain BMI 10 was co-cultured (by 21 and 25 %, respectively). Furthermore, the nutrient removal efficiency of P21 was not significantly different under sterilized and unsterilized conditions. Harvestability of the strain was also increased under both conditions. Analysis of the amount and composition of fatty acids from this co-culture biomass revealed that it was quite satisfactory for biodiesel production (54.11-61.52% saturated fatty acids with a 0.59-0.82 degree of unsaturation). Overall, the results showed the co-culture of the alga and bacterium is a holistic enhancement that couples wastewater treatment with biodiesel production.


Subject(s)
Chlorella , Manihot , Microalgae , Water Purification , Biofuels , Biomass , Coculture Techniques , Streptomyces , Wastewater
8.
Sci Rep ; 11(1): 16604, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34400661

ABSTRACT

Host-specific legume-rhizobium symbiosis is strictly controlled by rhizobial type III effectors (T3Es) in some cases. Here, we demonstrated that the symbiosis of Vigna radiata (mung bean) with Bradyrhizobium diazoefficiens USDA110 is determined by NopE, and this symbiosis is highly dependent on host genotype. NopE specifically triggered incompatibility with V. radiata cv. KPS2, but it promoted nodulation in other varieties of V. radiata, including KPS1. Interestingly, NopE1 and its paralogue NopE2, which exhibits calcium-dependent autocleavage, yield similar results in modulating KPS1 nodulation. Furthermore, NopE is required for early infection and nodule organogenesis in compatible plants. Evolutionary analysis revealed that NopE is highly conserved among bradyrhizobia and plant-associated endophytic and pathogenic bacteria. Our findings suggest that V. radiata and B. diazoefficiens USDA110 may use NopE to optimize their symbiotic interactions by reducing phytohormone-mediated ETI-type (PmETI) responses via salicylic acid (SA) biosynthesis suppression.


Subject(s)
Bradyrhizobium/physiology , Plant Growth Regulators/physiology , Plant Proteins/physiology , Plant Root Nodulation/physiology , Root Nodules, Plant/microbiology , Vigna/microbiology , Base Sequence , Bradyrhizobium/genetics , Evolution, Molecular , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Plant , Genes, Bacterial , Mutation , Plant Proteins/biosynthesis , Plant Proteins/genetics , Plant Roots/microbiology , RNA, Bacterial/biosynthesis , RNA, Bacterial/genetics , RNA, Plant/biosynthesis , RNA, Plant/genetics , Salicylic Acid/metabolism , Symbiosis , Transcriptome
10.
Sci Rep ; 11(1): 4874, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33649428

ABSTRACT

The Bradyrhizobium vignae strain ORS3257 is an elite strain recommended for cowpea inoculation in Senegal. This strain was recently shown to establish symbioses on some Aeschynomene species using a cocktail of Type III effectors (T3Es) secreted by the T3SS machinery. In this study, using a collection of mutants in different T3Es genes, we sought to identify the effectors that modulate the symbiotic properties of ORS3257 in three Vigna species (V. unguiculata, V. radiata and V. mungo). While the T3SS had a positive impact on the symbiotic efficiency of the strain in V. unguiculata and V. mungo, it blocked symbiosis with V. radiata. The combination of effectors promoting nodulation in V. unguiculata and V. mungo differed, in both cases, NopT and NopAB were involved, suggesting they are key determinants for nodulation, and to a lesser extent, NopM1 and NopP1, which are additionally required for optimal symbiosis with V. mungo. In contrast, only one effector, NopP2, was identified as the cause of the incompatibility between ORS3257 and V. radiata. The identification of key effectors which promote symbiotic efficiency or render the interaction incompatible is important for the development of inoculation strategies to improve the growth of Vigna species cultivated in Africa and Asia.

11.
Microbes Environ ; 35(3)2020.
Article in English | MEDLINE | ID: mdl-32727975

ABSTRACT

Bradyrhizobium sp. strain SUTN9-2 is a symbiotic and endophytic diazotrophic bacterium found in legume and rice plants and has the potential to promote growth. The present results revealed that SUTN9-2 underwent cell enlargement, increased its DNA content, and efficiently performed nitrogen fixation in response to rice extract. Some factors in rice extract induced the expression of cell cycle and nitrogen fixation genes. According to differentially expressed genes (DEGs) from the transcriptomic analysis, SUTN9-2 was affected by rice extract and the deletion of the bclA gene. The up-regulated DEGs encoding a class of oxidoreductases, which act with oxygen atoms and may have a role in controlling oxygen at an appropriate level for nitrogenase activity, followed by GroESL chaperonins are required for the function of nitrogenase. These results indicate that following its exposure to rice extract, nitrogen fixation by SUTN9-2 is induced by the collective effects of GroESL and oxidoreductases. The expression of the sensitivity to antimicrobial peptides transporter (sapDF) was also up-regulated, resulting in cell differentiation, even when bclA (sapDF) was mutated. This result implies similarities in the production of defensin-like antimicrobial peptides (DEFs) by rice and nodule-specific cysteine-rich (NCR) peptides in legume plants, which affect bacterial cell differentiation.


Subject(s)
Bradyrhizobium/cytology , Bradyrhizobium/metabolism , Nitrogen Fixation , Oryza/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bradyrhizobium/genetics , Cell Cycle/genetics , Endophytes , Gene Expression Regulation , Mutation , Nitrogen Fixation/drug effects , Nitrogen Fixation/genetics , Oryza/chemistry , Oryza/growth & development , Plant Extracts/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Symbiosis , Transcriptome/drug effects
12.
Microbiologyopen ; 8(7): e00781, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30628192

ABSTRACT

This study supports the idea that the evolution of type III secretion system (T3SS) is one of the factors that controls Vigna radiata-bradyrhizobia symbiosis. Based on phylogenetic tree data and gene arrangements, it seems that the T3SSs of the Thai bradyrhizobial strains SUTN9-2, DOA1, and DOA9 and the Senegalese strain ORS3257 may share the same origin. Therefore, strains SUTN9-2, DOA1, DOA9, and ORS3257 may have evolved their T3SSs independently from other bradyrhizobia, depending on biological and/or geological events. For functional analyses, the rhcJ genes of ORS3257, SUTN9-2, DOA9, and USDA110 were disrupted. These mutations had cultivar-specific effects on nodulation properties. The T3SSs of ORS3257 and DOA9 showed negative effects on V. radiata nodulation, while the T3SS of SUTN9-2 showed no effect on V. radiata symbiosis. In the roots of V. radiata CN72, the expression levels of the PR1 gene after inoculation with ORS3257 and DOA9 were significantly higher than those after inoculation with ORS3257 ΩT3SS, DOA9 ΩT3SS, and SUTN9-2. The T3Es from ORS3257 and DOA9 could trigger PR1 expression, which ultimately leads to abort nodulation. In contrast, the T3E from SUTN9-2 reduced PR1 expression. It seems that the mutualistic relationship between SUTN9-2 and V. radiata may have led to the selection of the most well-adapted combination of T3SS and symbiotic bradyrhizobial genotype.

13.
Front Microbiol ; 8: 1810, 2017.
Article in English | MEDLINE | ID: mdl-28979252

ABSTRACT

The Bradyrhizobium sp. DOA9 strain isolated from a paddy field has the ability to nodulate a wide spectrum of legumes. Unlike other bradyrhizobia, this strain has a symbiotic plasmid harboring nod, nif, and type 3 secretion system (T3SS) genes. This T3SS cluster contains all the genes necessary for the formation of the secretory apparatus and the transcriptional activator (TtsI), which is preceded by a nod-box motif. An in silico search predicted 14 effectors putatively translocated by this T3SS machinery. In this study, we explored the role of the T3SS in the symbiotic performance of DOA9 by evaluating the ability of a T3SS mutant (ΩrhcN) to nodulate legumes belonging to Dalbergioid, Millettioid, and Genistoid tribes. Among the nine species tested, four (Arachis hypogea, Vigna radiata, Crotalaria juncea, and Macroptilium atropurpureum) responded positively to the rhcN mutation (ranging from suppression of plant defense reactions, an increase in the number of nodules and a dramatic improvement in nodule development and infection), one (Stylosanthes hamata) responded negatively (fewer nodules and less nitrogen fixation) and four species (Aeschynomene americana, Aeschynomene afraspera, Indigofera tinctoria, and Desmodium tortuosum) displayed no phenotype. We also tested the role of the T3SS in the ability of the DOA9 strain to endophytically colonize rice roots, but detected no effect of the T3SS mutation, in contrast to what was previously reported in the Bradyrhizobium SUTN9-2 strain. Taken together, these data indicate that DOA9 contains a functional T3SS that interferes with the ability of the strain to interact symbiotically with legumes but not with rice.

14.
Appl Environ Microbiol ; 83(22)2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28916558

ABSTRACT

Bradyrhizobium encompasses a variety of bacteria that can live in symbiotic and endophytic associations with leguminous and nonleguminous plants, such as rice. Therefore, it can be expected that rice endophytic bradyrhizobia can be applied in the rice-legume crop rotation system. Some endophytic bradyrhizobial strains were isolated from rice (Oryza sativa L.) tissues. The rice biomass could be enhanced when supplementing bradyrhizobial strain inoculation with KNO3, NH4NO3, or urea, especially in Bradyrhizobium sp. strain SUTN9-2. In contrast, the strains which suppressed rice growth were photosynthetic bradyrhizobia and were found to produce nitric oxide (NO) in the rice root. The expression of genes involved in NO production was conducted using a quantitative reverse transcription-PCR (qRT-PCR) technique. The nirK gene expression level in Bradyrhizobium sp. strain SUT-PR48 with nitrate was higher than that of the norB gene. In contrast, the inoculation of SUTN9-2 resulted in a lower expression of the nirK gene than that of the norB gene. These results suggest that SUT-PR48 may accumulate NO more than SUTN9-2 does. Furthermore, the nifH expression of SUTN9-2 was induced in treatment without nitrogen supplementation in an endophytic association with rice. The indole-3-acetic acid (IAA) and 1-amino-cyclopropane-1-carboxylic acid (ACC) deaminase produced in planta by SUTN9-2 were also detected. Enumeration of rice endophytic bradyrhizobia from rice tissues revealed that SUTN9-2 persisted in rice tissues until rice-harvesting season. The mung bean (Vigna radiata) can be nodulated after rice stubbles were decomposed. Therefore, it is possible that rice stubbles can be used as an inoculum in the rice-legume crop rotation system under both low- and high-organic-matter soil conditions.IMPORTANCE This study shows that some rice endophytic bradyrhizobia could produce IAA and ACC deaminase and have a nitrogen fixation ability during symbiosis inside rice tissues. These characteristics may play an important role in rice growth promotion by endophytic bradyrhizobia. However, the NO-producing strains should be of concern due to a possible deleterious effect of NO on rice growth. In addition, this study reports the application of endophytic bradyrhizobia in rice stubbles, and the rice stubbles were used directly as an inoculum for a leguminous plant (mung bean). The degradation of rice stubbles leads to an increased number of SUTN9-2 in the soil and may result in increased mung bean nodulation. Therefore, the persistence of endophytic bradyrhizobia in rice tissues can be developed to use rice stubbles as an inoculum for mung bean in a rice-legume crop rotation system.


Subject(s)
Agricultural Inoculants/physiology , Bradyrhizobium/physiology , Oryza/microbiology , Plant Stems/microbiology , Vigna/microbiology , Agricultural Inoculants/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bradyrhizobium/genetics , Crop Production , Nitric Oxide/metabolism , Oryza/growth & development , Plant Roots/growth & development , Plant Roots/microbiology , Symbiosis , Vigna/growth & development
15.
Microbes Environ ; 31(3): 260-7, 2016 Sep 29.
Article in English | MEDLINE | ID: mdl-27431195

ABSTRACT

The nitrogen fixation (nif) genes of nodule-forming Bradyrhizobium strains are generally located on symbiosis islands or symbiosis plasmids, suggesting that these genes have been transferred laterally. The nif genes of rhizobial and non-rhizobial Bradyrhizobium strains were compared in order to infer the evolutionary histories of nif genes. Based on all codon positions, the phylogenetic tree of concatenated nifD and nifK sequences showed that nifDK on symbiosis islands formed a different clade from nifDK on non-symbiotic loci (located outside of symbiosis islands and plasmids) with elongated branches; however, these genes were located in close proximity, when only the 1st and 2nd codon positions were analyzed. The guanine (G) and cytosine (C) content of the 3rd codon position of nifDK on symbiosis islands was lower than that on non-symbiotic loci. These results suggest that nif genes on symbiosis islands were derived from the non-symbiotic loci of Bradyrhizobium or closely related strains and have evolved toward a lower GC content with a higher substitution rate than the ancestral state. Meanwhile, nifDK on symbiosis plasmids clustered with nifDK on non-symbiotic loci in the tree representing all codon positions, and the GC content of symbiotic and non-symbiotic loci were similar. These results suggest that nif genes on symbiosis plasmids were derived from the non-symbiotic loci of Bradyrhizobium and have evolved with a similar evolutionary pattern and rate as the ancestral state.


Subject(s)
Bradyrhizobium/genetics , Evolution, Molecular , Genomic Islands , Nitrogen Fixation , Plasmids , Base Composition , Cluster Analysis , Genes, Bacterial , Phylogeny , Sequence Homology
16.
Microbes Environ ; 30(4): 291-300, 2015.
Article in English | MEDLINE | ID: mdl-26582551

ABSTRACT

Plant associations by bradyrhizobia have been detected not only in leguminous plants, but also in non-leguminous species including rice. Bradyrhizobium sp. SUTN9-2 was isolated from Aeschynomene americana L., which is a leguminous weed found in the rice fields of Thailand. This strain promoted the highest total rice (Oryza sativa L. cultivar Pathum Thani 1) dry weight among the endophytic bradyrhizobial strains tested, and was, thus, employed for the further characterization of rice-Bradyrhizobium interactions. Some known bacterial genes involved in bacteria-plant interactions were selected. The expression of the type III secretion component (rhcJ), type IV secretion component (virD4), and pectinesterase (peces) genes of the bacterium were up-regulated when the rice root exudate was added to the culture. When SUTN9-2 was inoculated into rice seedlings, the peces, rhcJ, virD4, and exopolysaccharide production (fliP) genes were strongly expressed in the bacterium 6-24 h after the inoculation. The gene for glutathione-S-transferase (gst) was slightly expressed 12 h after the inoculation. In order to determine whether type III secretion system (T3SS) is involved in bradyrhizobial infections in rice plants, wild-type SUTN9-2 and T3SS mutant strains were inoculated into the original host plant (A. americana) and a rice plant (cultivar Pathum Thani 1). The ability of T3SS mutants to invade rice tissues was weaker than that of the wild-type strain; however, their phenotypes in A. americana were not changed by T3SS mutations. These results suggest that T3SS is one of the important determinants modulating rice infection; however, type IV secretion system and peces may also be responsible for the early steps of rice infection.


Subject(s)
Bradyrhizobium/physiology , Endophytes/physiology , Oryza/microbiology , Symbiosis , Type III Secretion Systems , Bradyrhizobium/genetics , Bradyrhizobium/isolation & purification , Bradyrhizobium/metabolism , Endocytosis , Endophytes/metabolism , Fabaceae/microbiology , Gene Deletion , Oryza/growth & development , Thailand
17.
Appl Environ Microbiol ; 81(9): 3049-61, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25710371

ABSTRACT

Plant colonization by bradyrhizobia is found not only in leguminous plants but also in nonleguminous species such as rice. To understand the evolution of the endophytic symbiosis of bradyrhizobia, the effect of the ecosystems of rice plantations on their associations was investigated. Samples were collected from various rice (Oryza sativa) tissues and crop rotational systems. The rice endophytic bradyrhizobia were isolated on the basis of oligotrophic properties, selective medium, and nodulation on siratro (Macroptilium atropurpureum). Six bradyrhizobial strains were obtained exclusively from rice grown in a crop rotational system. The isolates were separated into photosynthetic bradyrhizobia (PB) and nonphotosynthetic bradyrhizobia (non-PB). Thai bradyrhizobial strains promoted rice growth of Thai rice cultivars better than the Japanese bradyrhizobial strains. This implies that the rice cultivars possess characteristics that govern rice-bacterium associations. To examine whether leguminous plants in a rice plantation system support the persistence of rice endophytic bradyrhizobia, isolates were tested for legume nodulation. All PB strains formed symbioses with Aeschynomene indica and Aeschynomene evenia. On the other hand, non-PB strains were able to nodulate Aeschynomene americana, Vigna radiata, and M. atropurpureum but unable to nodulate either A. indica or A. evenia. Interestingly, the nodABC genes of all of these bradyrhizobial strains seem to exhibit low levels of similarity to those of Bradyrhizobium diazoefficiens USDA110 and Bradyrhizobium sp. strain ORS285. From these results, we discuss the evolution of the plant-bradyrhizobium association, including nonlegumes, in terms of photosynthetic lifestyle and nod-independent interactions.


Subject(s)
Bradyrhizobiaceae/growth & development , Bradyrhizobiaceae/isolation & purification , Endophytes/growth & development , Endophytes/isolation & purification , Oryza/microbiology , Bradyrhizobiaceae/physiology , Endophytes/physiology , Fabaceae/microbiology , Plant Development , Plant Root Nodulation , Symbiosis
18.
Microbes Environ ; 29(4): 370-6, 2014.
Article in English | MEDLINE | ID: mdl-25283477

ABSTRACT

Bradyrhizobium sp. DOA9, a non-photosynthetic bacterial strain originally isolated from the root nodules of the legume Aeschynomene americana, is a divergent nod-containing strain. It exhibits a broad host range, being able to colonize and efficiently nodulate the roots of most plants from the Dalbergioid, Millettioid, and Robinioid tribes (7 species of Papilionoideae). In all cases, nodulation was determinate. The morphology and size of DOA9 bacteroids isolated from the nodules of various species of Papilionoideae were indistinguishable from the free-living form. However, they were spherical in Arachis hypogaea nodules. GusA-tagged DOA9 also colonized rice roots as endophytes. Since broad-host-range legume symbionts often carry multiple replicons in their genome, we analyzed the replicons for symbiosis genes by electrophoresis. DOA9 carried two replicons, a chromosome (cDOA9) and single megaplasmid (pDOA9) larger than 352 kb. The genes for nodulation (nodA, B, C) and nitrogen fixation (nifH) were localized on the megaplasmid. Southern blot hybridization revealed two copies of nodA on the megaplasmid, single copies of nodB and C on the megaplasmid, and one copy each of nifH on the chromosome and megaplasmid. These results suggested that Bradyrhizobium sp. DOA9 may have the unusual combination of a broad host range, bacteroid differentiation, and symbiosis-mediating replicons.


Subject(s)
Bradyrhizobium/classification , Bradyrhizobium/physiology , Host Specificity , Magnoliopsida/microbiology , Plasmids , Blotting, Southern , Bradyrhizobium/cytology , Bradyrhizobium/genetics , Genes, Bacterial , Metabolic Networks and Pathways/genetics , Microscopy , Nitrogen Fixation , Plant Root Nodulation , Root Nodules, Plant/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...