Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J AOAC Int ; 102(5): 1263-1270, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-30890207

ABSTRACT

Background: To effectively safeguard the food-allergic population and support compliance with food-labeling regulations, the food industry and regulatory agencies require reliable methods for food allergen detection and quantification. MS-based detection of food allergens relies on the systematic identification of robust and selective target peptide markers. The selection of proteotypic peptide markers, however, relies on the availability of high-quality protein sequence information, a bottleneck for the analysis of many plant-based proteomes. Method: In this work, data were compiled for reference tree nut ingredients and evaluated using a parsimony-driven global proteomics workflow. Results: The utility of supplementing existing incomplete protein sequence databases with translated genomic sequencing data was evaluated for English walnut and provided enhanced selection of candidate peptide markers and differentiation between closely related species. Highlights: Future improvements of protein databases and release of genomics-derived sequences are expected to facilitate the development of robust and harmonized LC-tandem MS-based methods for food allergen detection.


Subject(s)
Allergens/analysis , Databases, Protein , Nuts/chemistry , Peptides/analysis , Plant Proteins/analysis , Trees/chemistry , Allergens/chemistry , Amino Acid Sequence , Biomarkers/analysis , Peptides/chemistry , Plant Proteins/chemistry , Proteomics , Tracheophyta/chemistry
2.
Ann Bot ; 120(6): 923-936, 2017 Nov 28.
Article in English | MEDLINE | ID: mdl-29045531

ABSTRACT

BACKGROUND AND AIMS: Gymnosperms are either wind-pollinated (anemophilous) or both wind- and insect-pollinated (ambophilous). Regardless of pollination mode, ovular secretions play a key role in pollen capture, germination and growth; they are likely also involved in pollinator reward. Little is known about the broad-scale diversity of ovular secretions across gymnosperms, and how these may relate to various reproductive functions. This study analyses the sugar and amino acid profiles of ovular secretions across a range of ambophilous (cycads and Gnetales) and anemophilous gymnosperms (conifers) to place them in an evolutionary context of their possible functions during reproduction. METHODS: Ovular secretions from 13 species representing all five main lineages of extant gymnosperms were sampled. High-performance liquid chromatography techniques were used to measure sugar and amino acid content. Multivariate statistics were applied to assess whether there are significant differences in the chemical profiles of anemophilous and ambophilous species. Data were compared with published chemical profiles of angiosperm nectar. Chemical profiles were placed in the context of phylogenetic relationships. KEY RESULTS: Total sugar concentrations were significantly higher in ovular secretions of ambophilous species than wind-pollinated taxa such as Pinaceae and Cupressophyta. Ambophilous species had lower amounts of total amino acids, and a higher proportion of non-protein amino acids compared with anemophilous lineages, and were also comparable to angiosperm nectar. Results suggest that early gymnosperms likely had ovular secretion profiles that were a mosaic of those associated with modern anemophilous and ambophilous species. Ginkgo, thought to be anemophilous, had a profile typical of ambophilous taxa, suggesting that insect pollination either exists in Gingko, but is undocumented, or that its ancestral populations were insect-pollinated. CONCLUSIONS: Chemical profiles of ovular secretions of ambophilous gymnosperms show a clear signal of pollinator-driven selection, including higher levels of carbohydrates than anemophilous taxa, lower levels of amino acids, and the presence of specific amino acids, such as ß-alanine, that are known to influence insect feeding behaviour and physiology.


Subject(s)
Amino Acids/metabolism , Cycadopsida/metabolism , Ovule/metabolism , Pollination , Sugars/metabolism , Animals , Insecta/physiology , Phylogeny , Wind
3.
Genome Announc ; 4(1)2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26823571

ABSTRACT

Salmonella enterica subsp. enterica serovar Cerro is an infrequent pathogen of humans and other mammals but is frequently isolated from the hindgut of asymptomatic cattle in the United States. To further understand the genomic determinants of S. Cerro specificity for the bovine hindgut, the genome of isolate CFSAN001588 was fully sequenced and deposited in the GenBank database.

4.
Genome Announc ; 2(5)2014 Oct 30.
Article in English | MEDLINE | ID: mdl-25359917

ABSTRACT

Salmonella enterica subsp. enterica serovar Cubana (Salmonella serovar Cubana) is associated with human and animal disease. Here, we used third-generation, single-molecule, real-time DNA sequencing to determine the first complete genome sequence of Salmonella serovar Cubana CFSAN002050, which was isolated from fresh alfalfa sprouts during a multistate outbreak in 2012.

5.
Appl Plant Sci ; 1(4)2013 Apr.
Article in English | MEDLINE | ID: mdl-25202539

ABSTRACT

PREMISE OF THE STUDY: Pollination drops are a formative component in gymnosperm pollen-ovule interactions. Proteomics offers a direct method for the discovery of proteins associated with this early stage of sexual reproduction. • METHODS: Pollination drops were sampled from eight gymnosperm species: Chamaecyparis lawsoniana (Port Orford cedar), Ephedra monosperma, Ginkgo biloba, Juniperus oxycedrus (prickly juniper), Larix ×marschlinsii, Pseudotsuga menziesii (Douglas-fir), Taxus ×media, and Welwitschia mirabilis. Drops were collected by micropipette using techniques focused on preventing sample contamination. Drop proteins were separated using both gel and gel-free methods. Tandem mass spectrometric methods were used including a triple quadrupole and an Orbitrap. • RESULTS: Proteins are present in all pollination drops. Consistency in the protein complement over time was shown in L. ×marschlinsii. Representative mass spectra from W. mirabilis chitinase peptide and E. monosperma serine carboxypeptidase peptide demonstrated high quality results. We provide a summary of gymnosperm pollination drop proteins that have been discovered to date via proteomics. • DISCUSSION: Using proteomic methods, a dozen classes of proteins have been identified to date. Proteomics presents a way forward in deepening our understanding of the biological function of pollination drops.

6.
AoB Plants ; 2010: plq020, 2010.
Article in English | MEDLINE | ID: mdl-22476078

ABSTRACT

BACKGROUND AND AIMS: Bilirubin is an orange-yellow tetrapyrrole produced from the breakdown of heme by mammals and some other vertebrates. Plants, algae and cyanobacteria synthesize molecules similar to bilirubin, including the protein-bound bilins and phytochromobilin which harvest or sense light. Recently, we discovered bilirubin in the arils of Strelitzia nicolai, the White Bird of Paradise Tree, which was the first example of this molecule in a higher plant. Subsequently, we identified bilirubin in both the arils and the flowers of Strelitzia reginae, the Bird of Paradise Flower. In the arils of both species, bilirubin is present as the primary pigment, and thus functions to produce colour. Previously, no tetrapyrroles were known to generate display colour in plants. We were therefore interested in determining whether bilirubin is broadly distributed in the plant kingdom and whether it contributes to colour in other species. METHODOLOGY: In this paper, we use HPLC/UV and HPLC/UV/electrospray ionization-tandem mass spectrometry (HPLC/UV/ESI-MS/MS) to search for bilirubin in 10 species across diverse angiosperm lineages. PRINCIPAL RESULTS: Bilirubin was present in eight species from the orders Zingiberales, Arecales and Myrtales, but only contributed to colour in species within the Strelitziaceae. CONCLUSIONS: The wide distribution of bilirubin in angiosperms indicates the need to re-assess some metabolic details of an important and universal biosynthetic pathway in plants, and further explore its evolutionary history and function. Although colour production was limited to the Strelitziaceae in this study, further sampling may indicate otherwise.

7.
J Am Chem Soc ; 131(8): 2830, 2009 Mar 04.
Article in English | MEDLINE | ID: mdl-19206232

ABSTRACT

The bile pigment bilirubin-IXalpha is the degradative product of heme, distributed among mammals and some other vertebrates. It can be recognized as the pigment responsible for the yellow color of jaundice and healing bruises. In this paper we present the first example of the isolation of bilirubin in plants. The compound was isolated from the brilliant orange-colored arils of Strelitzia nicolai, the white bird of paradise tree, and characterized by HPLC-ESMS, UV-visible, (1)H NMR, and (13)C NMR spectroscopy, as well as comparison with an authentic standard. This discovery indicates that plant cyclic tetrapyrroles may undergo degradation by a previously unknown pathway. Preliminary analyses of related plants, including S. reginae, the bird of paradise, also revealed bilirubin in the arils and flowers, indicating that the occurrence of bilirubin is not limited to a single species or tissue type.


Subject(s)
Bilirubin/isolation & purification , Strelitziaceae/chemistry , Bilirubin/chemistry , Bilirubin/metabolism , Chromatography, High Pressure Liquid , Hydrogen Bonding , Nuclear Magnetic Resonance, Biomolecular , Strelitziaceae/metabolism , Tetrapyrroles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...