Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nutr Cancer ; 72(4): 653-661, 2020.
Article in English | MEDLINE | ID: mdl-31390910

ABSTRACT

Tumor-targeted nanoparticle delivery system has been known as a substitute and capable achievement in cancer treatment compared to conventional methods. In this study, we examined potential application of ɑ-tocotrienol-Precirol formulation to enhance efficiency of doxorubicin (DOX) in induction of apoptosis in HUH-7 hepatocarcinoma cells. ɑ-tocotrienol-loaded nanoparticles were characterized at the point of zeta potential, particle size, scanning electron microscope (SEM), and cell internalization. To evaluate antiproliferative effects of formulation, apoptosis, cell cycle procedure, flow cytometry, and MTT assays were employed. Optimum size of the ɑ-tocotrienol formulation revealed narrow size distribution with mean average of 78 ± 3 nm. IC50 values for ɑ-tocotrienol and ɑ-tocotrienol-nano structured lipid carriers after 24 h were 15 ± 0.6 and 10 ± 0.03 µM, respectively. After incubation of cells with ɑ-tocotrienol-loaded careers, the rate of cell proliferation decreased from 53 ± 6.1 to 34 ± 7.1% (P < 0.05). A significant improvement in the apoptosis percentage was revealed after treatment of the HUH-7 cell line with DOX and ɑ-tocotrienol careers (P < 0.05). Gene expression results demonstrated a marked decrease in survivin and increase in Bid and Bax levels. Our findings suggest that ɑ-tocotrienol-loaded nanoparticles elevate DOX efficacy in HUH-7 hepatocarcinoma cell.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Diglycerides/chemistry , Doxorubicin/pharmacology , Liver Neoplasms/drug therapy , Tocotrienols/chemistry , Apoptosis/drug effects , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Dose-Response Relationship, Drug , Doxorubicin/chemistry , Drug Compounding , Humans , Liver Neoplasms/pathology , Nanoparticles , Survivin/genetics , bcl-2-Associated X Protein/genetics
2.
Naunyn Schmiedebergs Arch Pharmacol ; 393(1): 1-11, 2020 01.
Article in English | MEDLINE | ID: mdl-31372697

ABSTRACT

The harmful dose-dependent side effects of chemotherapy drugs have caused the discovery of novel perspective to evaluate chemotherapy protocols. In this study, the potential application of Compritol was investigated as a major scaffold into nanostructured lipid careers to highlight myricetin efficiency in treatment of breast cancer cells along with codelivery of docetaxel (DXT). Characterization of myricetin-loaded NLCs was carried out by measuring the particle size and zeta potential, using the scanning electron microscopy. MTT, DAPI staining, flow cytometric, and RT-PCR (real-time) assays were used to recognize novel formulation behavior on cell cytotoxicity as well as recognizing molecular mechanism of formulation concerning apoptosis phenomenon. Myricetin-loaded NLCs reduced the cell viability from 50 ± 2.3 to 40 ± 1.3% (p < 0.05). Percentage of apoptosis improved with combination treatment of myricetin-loaded NLCs and DXT in the MDA-MBA231 breast cancer cells. Expression of antiapoptotic genes (survivin, Cyclin B1, and Mcl1) indicated a significant reduction in factor along with increment in proapoptotic factor Bax and Bid mRNA rates. Overall, our results represented that the NLC delivery system could be a promising strategy to enhance the effect of anticancer agents such as DXT on breast cancer.


Subject(s)
Antineoplastic Agents/administration & dosage , Docetaxel/administration & dosage , Drug Carriers/administration & dosage , Flavonoids/administration & dosage , G1 Phase Cell Cycle Checkpoints/drug effects , Nanoparticles/administration & dosage , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Survival/drug effects , Docetaxel/chemistry , Drug Carriers/chemistry , Drug Liberation , Fatty Acids/administration & dosage , Fatty Acids/chemistry , Flavonoids/chemistry , Humans , Nanoparticles/chemistry
3.
J Cardiovasc Thorac Res ; 11(1): 43-47, 2019.
Article in English | MEDLINE | ID: mdl-31024671

ABSTRACT

Introduction: microRNAs (miRNAs) are highly conserved, noncoding RNA molecules that regulate gene expression on the post-transcriptional level. Some evidence indicates that microRNAs dysfunction plays a crucial role in human disease development. The role of microRNAs in cardiac growth, hypertrophy, heart failure, cardiovascular complications in diabetes and many other hearth conditions are demonstrated. In this study we aimed to evaluate the expression of six microRNAs (mir-100, mir-126, mir-127, mir-133a, mir-133b and mir-145) that have been shown to overexpress in aortic and carotid plaques. Methods: Thirty Coronary Artery Disease patients who underwent elective coronary artery bypass graft surgery were enrolled in the study. The expression patterns of six miRNAs (mir-100, mir-126, mir-127, mir-133a, mir-133b, and mir-145) were examined in 30 patients of whom we obtained aorta and saphenous vein samples. Results: In three miRNAs, mir-100, mir-127 and mir-133b, we did not obtain expression data from real-time experiments. We found that the expression level of mir-126, mir-133a and mir145 were lower in aorta in comparison with saphenous vein. Mir-126 was highly expressed in saphenous vein samples (13.8±1.1) when compared with aorta samples (20.2±1.1), although mir133a was highly expressed in saphenous vein samples (16.1±0.5) when compared with the aorta (17.9±1.5). Expression of mir-145 saphenous vein samples was also dramatically higher than aorta (7.2±0.5 versus 10.8±0.6) that was statistically significant (P<0.05). Conclusion: Understanding the role of miRNAs in cardiovascular physiology and diseases might suggest miRNA- based therapeutic methods in the management of coronary artery disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...