Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 95(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38421260

ABSTRACT

A soft x-ray varied-line-spacing (VLS) laminar-type spherical grating with a super-mirror-type (SMT) multilayer was designed for a soft x-ray high resolution flat-field spectrograph in a region of 2-4 keV. The effective groove density of the designed VLS grating is 3200 lines/mm, and the local groove density varies from 2700 to 3866 lines/mm. The geometrical imaging property was evaluated by numerical calculations. The resolving power estimated by means of ray tracing was up to ∼103. For the evaluation of diffraction efficiency, the SMT multilayer structure designed for 3200 lines/mm in our previous work, Koike et al., Rev. Sci. Instrum. 94, 045109 (2023), was employed, and the numerical calculation was performed considering the local groove density of VLS grooves and the local incidence angle being affected by the curvature of the spherical surface and the geometrical relation between the source and incidence point on the grating. The results showed that the SMT multilayer-coated grating exhibited about an order of magnitude higher diffraction efficiency compared with an Au-coated grating.

2.
Rev Sci Instrum ; 94(4)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-38081245

ABSTRACT

Soft x-ray diffraction gratings coated with a supermirror-type multilayer were designed to enhance diffraction efficiency in the energy range of 2-4 keV by means of numerical calculations. The optimized groove depth and incidence angle are 2.05 nm and 88.65°, respectively, for the grating having a groove density of 3200 grooves/mm. Regarding the multilayer structure, the optimum number of B4C/W layers pair was 11 and the thickness of B4C was increased from bottom to top, while that of W was kept constant. The replacement of the top layer of W by either Co, Cr, or Ni was an effective means of obtaining uniform diffraction efficiency. In the region of 2-4 keV, the calculated diffraction efficiency of the designed gratings was up to ∼5.3%, on average, and almost eight times larger than that of ∼0.7% of an Au coated grating.

3.
Rev Sci Instrum ; 94(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38156956

ABSTRACT

Laminar-type spherical diffraction gratings overcoated with carbon-based materials were designed, fabricated, and evaluated for the purpose of enhancing the analytical sensitivity of the flat-field spectrograph in a vacuum ultraviolet region of 35-110 eV. As the design benchmark for numerical calculations, diffraction efficiency (DE) and spectral flux, which are defined by the product of the DE and numerical aperture and correlate with the analytical sensitivity of the spectrograph, were used. To simplify the feasibility study on the overcoating effects, we assumed a laminar-type grating having a grating constant of 1/1000 mm and coated with a Au layer of 30.0 nm thickness and an incidence angle of 84.0°. The optimized groove depth and duty ratio were 30.0 nm and 0.3, respectively. In addition, the optimum thicknesses of the overcoating layer were 44, 46, 24, and 30 nm for B4C, C, diamond-like-carbon, and SiC, respectively. Based on these results, we have fabricated a varied-line-spacing holographic grating overcoated with B4C with a thickness of 47 nm. For the experimental evaluation, we used the light source of Mg-L and Al-L emissions excited by the electron beam generated from an electron microscope, an objective flat-field spectrograph, and a CCD imaging detector. The experimental results showed that the spectrograph employing a new grating overcoated with the B4C layer indicated almost the same spectral resolution and 2.9-4.2 times higher analytical sensitivity compared with those obtained with a previously designed Au-coated grating having a grating constant of 1/1200 mm and used at an incidence of 86.0°.

4.
Rev Sci Instrum ; 92(11): 113102, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34852528

ABSTRACT

Accurate characterization of incident radiation is a fundamental challenge for diagnostic design. Herein, we present an efficient spectral analysis routine that is able to characterize multiple components within the spectral emission by analytically reducing the number of parameters. The technique is presented alongside the design of a hard x-ray linear absorption spectrometer using the example of multiple Boltzmann-like spectral distributions; however, it is generally applicable to all absorption based spectrometer designs and can be adapted to any incident spectral shape. This routine is demonstrated to be tolerable to experimental noise and suitable for real-time data processing at multi-Hz repetition rates.

5.
Phys Rev Lett ; 124(8): 084802, 2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32167312

ABSTRACT

Acceleration of particles from the interaction of ultraintense laser pulses up to 5×10^{21} W cm^{-2} with thin foils is investigated experimentally. The electron beam parameters varied with decreasing spot size, not just laser intensity, resulting in reduced temperatures and divergence. In particular, the temperature saturated due to insufficient acceleration length in the tightly focused spot. These dependencies affected the sheath-accelerated protons, which showed poorer spot-size scaling than widely used scaling laws. It is therefore shown that maximizing laser intensity by using very small foci has reducing returns for some applications.

6.
Sci Rep ; 7(1): 17968, 2017 12 21.
Article in English | MEDLINE | ID: mdl-29269841

ABSTRACT

Burst Intensification by Singularity Emitting Radiation (BISER) is proposed. Singularities in multi-stream flows of emitting media cause constructive interference of emitted travelling waves, forming extremely localized sources of bright coherent emission. Here we for the first time demonstrate this extreme localization of BISER by direct observation of nano-scale coherent x-ray sources in a laser plasma. The energy emitted into the spectral range from 60 to 100 eV is up to ~100 nJ, corresponding to ~1010 photons. Simulations reveal that these sources emit trains of attosecond x-ray pulses. Our findings establish a new class of bright laboratory sources of electromagnetic radiation. Furthermore, being applicable to travelling waves of any nature (e.g. electromagnetic, gravitational or acoustic), BISER provides a novel framework for creating new emitters and for interpreting observations in many fields of science.

7.
Rev Sci Instrum ; 88(7): 073304, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28764503

ABSTRACT

A high repetition rate scintillator-based transverse beam profile diagnostic for laser-plasma accelerated proton beams has been designed and commissioned. The proton beam profiler uses differential filtering to provide coarse energy resolution and a flexible design to allow optimisation for expected beam energy range and trade-off between spatial and energy resolution depending on the application. A plastic scintillator detector, imaged with a standard 12-bit scientific camera, allows data to be taken at a high repetition rate. An algorithm encompassing the scintillator non-linearity is described to estimate the proton spectrum at different spatial locations.

8.
Sci Rep ; 5: 13436, 2015 Sep 02.
Article in English | MEDLINE | ID: mdl-26330230

ABSTRACT

We report, for the first time, that the energy of femtosecond optical laser pulses, E, with relativistic intensities I > 10(21) W/cm(2) is efficiently converted to X-ray radiation, which is emitted by "hot" electron component in collision-less processes and heats the solid density plasma periphery. As shown by direct high-resolution spectroscopic measurements X-ray radiation from plasma periphery exhibits unusual non-linear growth ~E(4-5) of its power. The non-linear power growth occurs far earlier than the known regime when the radiation reaction dominates particle motion (RDR). Nevertheless, the radiation is shown to dominate the kinetics of the plasma periphery, changing in this regime (now labeled RDKR) the physical picture of the laser plasma interaction. Although in the experiments reported here we demonstrated by observation of KK hollow ions that X-ray intensities in the keV range exceeds ~10(17) W/cm(2), there is no theoretical limit of the radiation power. Therefore, such powerful X-ray sources can produce and probe exotic material states with high densities and multiple inner-shell electron excitations even for higher Z elements. Femtosecond laser-produced plasmas may thus provide unique ultra-bright X-ray sources, for future studies of matter in extreme conditions, material science studies, and radiography of biological systems.

9.
Rev Sci Instrum ; 85(2): 02A705, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24593439

ABSTRACT

High intensity laser-plasma interaction has attracted considerable interest for a number of years. The laser-plasma interaction is accompanied by generation of various charged particle beams, such as high-energy proton and ions with high charge to mass ratio (Q/M; same as multi-charged ions). Results of simultaneous novel measurements of electron-induced photonuclear neutrons (photoneutron), which are a diagnostic of the laser-plasma interaction, are proposed to use for optimization of the laser-plasma ion generation. The proposed method is demonstrated by the laser irradiation with the intensity of 1 × 10(21) W/cm(2) on the metal foil target. The photoneutrons are measured by using NE213 liquid scintillation detectors. Heavy-ion signal is registered with the CR-39 track detector simultaneously. The measured signals of the electron-induced photoneutrons are well reproduced by using the Particle and Heavy Ion Transport code System. The results obtained provide useful approach for analyzing the various laser based ion beams.

10.
Rev Sci Instrum ; 85(2): 02B904, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24593609

ABSTRACT

Experimental demonstration of multi-charged heavy ion acceleration from the interaction between the ultra-intense short pulse laser system and the metal target is presented. Al ions are accelerated up to 12 MeV/u (324 MeV total energy). To our knowledge, this is far the highest energy ever reported for the case of acceleration of the heavy ions produced by the <10 J laser energy of 200 TW class Ti:sapphire laser system. Adding to that, thanks to the extraordinary high intensity laser field of ∼10(21) W cm(-2), the accelerated ions are almost fully stripped, having high charge to mass ratio (Q/M).


Subject(s)
Aluminum , Heavy Ions , Lasers , Particle Accelerators/instrumentation
11.
Phys Rev Lett ; 108(13): 135004, 2012 Mar 30.
Article in English | MEDLINE | ID: mdl-22540709

ABSTRACT

We demonstrate a new high-order harmonic generation mechanism reaching the "water window" spectral region in experiments with multiterawatt femtosecond lasers irradiating gas jets. A few hundred harmonic orders are resolved, giving µJ/sr pulses. Harmonics are collectively emitted by an oscillating electron spike formed at the joint of the boundaries of a cavity and bow wave created by a relativistically self-focusing laser in underdense plasma. The spike sharpness and stability are explained by catastrophe theory. The mechanism is corroborated by particle-in-cell simulations.

12.
Opt Express ; 19(5): 4560-5, 2011 Feb 28.
Article in English | MEDLINE | ID: mdl-21369288

ABSTRACT

Kα line emissions from Mo and Ag plates were experimentally studied using clean, ultrahigh-intensity femtosecond laser pulses. The absolute yields of Kα x-rays at 17 keV from Mo and 22 keV from Ag were measured as a function of the laser pulse contrast ratio and irradiation intensity. Significantly enhanced Kα yields were obtained for both Mo and Ag by employing high contrast ratios and irradiances. Conversion efficiencies of 4.28×10⁻5/sr for Mo and 4.84×10⁻5/sr for Ag, the highest values obtained to date, were demonstrated with contrast ratios in the range 10⁻¹° to 10⁻¹¹.


Subject(s)
Lasers , X-Rays , Equipment Design , Equipment Failure Analysis , Radiation Dosage
13.
Phys Rev Lett ; 103(16): 165002, 2009 Oct 16.
Article in English | MEDLINE | ID: mdl-19905702

ABSTRACT

An approach for accelerating ions, with the use of a cluster-gas target and an ultrashort pulse laser of 150-mJ energy and 40-fs duration, is presented. Ions with energy 10-20 MeV per nucleon having a small divergence (full angle) of 3.4 degrees are generated in the forward direction, corresponding to approximately tenfold increase in the ion energies compared to previous experiments using solid targets. It is inferred from a particle-in-cell simulation that the high energy ions are generated at the rear side of the target due to the formation of a strong dipole vortex structure in subcritical density plasmas.

14.
Phys Rev Lett ; 103(2): 025002, 2009 Jul 10.
Article in English | MEDLINE | ID: mdl-19659215

ABSTRACT

An ultrabright high-power x- and gamma-radiation source is proposed. A high-density thin plasma slab, accelerating in the radiation pressure dominant regime by an ultraintense electromagnetic wave, reflects a counterpropagating relativistically strong electromagnetic wave, producing extremely time-compressed and intensified radiation. The reflected light contains relativistic harmonics generated at the plasma slab, all upshifted with the same factor as the fundamental mode of the incident light. The theory of an arbitrarily moving thin plasma slab reflectivity is presented.

15.
Rev Sci Instrum ; 80(5): 053302, 2009 May.
Article in English | MEDLINE | ID: mdl-19485501

ABSTRACT

An ion spectrometer, composed of a time-of-flight spectrometer (TOFS) and a Thomson parabola spectrometer (TPS), has been developed to measure energy spectra and to analyze species of laser-driven ions. Two spectrometers can be operated simultaneously, thereby facilitate to compare the independently measured data and to combine advantages of each spectrometer. Real-time and shot-to-shot characterizations have been possible with the TOFS, and species of ions can be analyzed with the TPS. The two spectrometers show very good agreement of maximum proton energy even for a single laser shot. The composite ion spectrometer can provide two complementary spectra measured by TOFS with a large solid angle and TPS with a small one for the same ion source, which are useful to estimate precise total ion number and to investigate fine structure of energy spectrum at high energy depending on the detection position and solid angle. Advantage and comparison to other online measurement system, such as the TPS equipped with microchannel plate, are discussed in terms of overlay of ion species, high-repetition rate operation, detection solid angle, and detector characteristics of imaging plate.


Subject(s)
Lasers , Mass Spectrometry/methods , Electricity , Ions , Magnetics , Mass Spectrometry/instrumentation , Protons , Reproducibility of Results , Time Factors
16.
Phys Rev Lett ; 103(19): 194803, 2009 Nov 06.
Article in English | MEDLINE | ID: mdl-20365929

ABSTRACT

A high stability electron bunch is generated by laser wakefield acceleration with the help of a colliding laser pulse. The wakefield is generated by a laser pulse; the second laser pulse collides with the first pulse at 180 degrees and at 135 degrees realizing optical injection of an electron bunch. The electron bunch has high stability and high reproducibility compared with single pulse electron generation. In the case of 180 degrees collision, special measures have been taken to prevent damage. In the case of 135 degrees collision, since the second pulse is countercrossing, it cannot damage the laser system.

17.
Phys Rev Lett ; 103(23): 235003, 2009 Dec 04.
Article in English | MEDLINE | ID: mdl-20366154

ABSTRACT

Laser light reflection by a relativistically moving electron density modulation (flying mirror) in a wake wave generated in a plasma by a high intensity laser pulse is investigated experimentally. A counterpropagating laser pulse is reflected and upshifted in frequency with a multiplication factor of 37-66, corresponding to the extreme ultraviolet wavelength. The demonstrated flying mirror reflectivity (from 3 x 10(-6) to 2 x 10(-5), and from 1.3 x 10(-4) to 0.6 x 10(-3), for the photon number and pulse energy, respectively) is close to the theoretical estimate for the parameters of the experiment.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(5 Pt 2): 056402, 2008 Nov.
Article in English | MEDLINE | ID: mdl-19113221

ABSTRACT

An electromagnetic wave (EMW) interacting with the moving singularity of the charged particle flux undergoes the reflection and absorption as well as frequency change due to Doppler effect and nonlinearity. The singularity corresponding to a caustic in plasma flow with inhomogeneous velocity can arise during the breaking of the finite amplitude Langmuir waves due to nonlinear effects. A systematic analysis of the wave-breaking regimes and caustics formation is presented and the EMW reflection coefficients are calculated.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(1 Pt 2): 016401, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18351938

ABSTRACT

Duration-controlled amplified spontaneous emission with an intensity of 10(13) W/cm(2) is used to convert a 7.5-microm -thick polyimide foil into a near-critical plasma, in which the p -polarized, 45-fs , 10(19) -Wcm (2) laser pulse generates 3.8-MeV protons, emitted at some angle between the target normal and the laser propagation direction of 45 degrees . Particle-in-cell simulations reveal that the efficient proton acceleration is due to the generation of a quasistatic magnetic field on the target rear side with magnetic pressure inducing and sustaining a charge separation electrostatic field.

20.
Phys Rev Lett ; 99(13): 135001, 2007 Sep 28.
Article in English | MEDLINE | ID: mdl-17930598

ABSTRACT

In a plasma wake wave generated by a high power laser, modulations of the electron density take the shape of paraboloidal dense shells, moving almost at the speed of light. A counterpropagating laser pulse is partially reflected from the shells, acting as relativistic flying mirrors, producing a time-compressed frequency-multiplied pulse due to the double Doppler effect. The counterpropagating laser pulse reflection from the plasma wake wave accompanied by its frequency multiplication (with a factor from 50 to 114) was detected in our experiment.

SELECTION OF CITATIONS
SEARCH DETAIL
...