Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Chem Biol ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902458

ABSTRACT

Computational protein design is advancing rapidly. Here we describe efficient routes starting from validated parallel and antiparallel peptide assemblies to design two families of α-helical barrel proteins with central channels that bind small molecules. Computational designs are seeded by the sequences and structures of defined de novo oligomeric barrel-forming peptides, and adjacent helices are connected by loop building. For targets with antiparallel helices, short loops are sufficient. However, targets with parallel helices require longer connectors; namely, an outer layer of helix-turn-helix-turn-helix motifs that are packed onto the barrels. Throughout these computational pipelines, residues that define open states of the barrels are maintained. This minimizes sequence sampling, accelerating the design process. For each of six targets, just two to six synthetic genes are made for expression in Escherichia coli. On average, 70% of these genes express to give soluble monomeric proteins that are fully characterized, including high-resolution structures for most targets that match the design models with high accuracy.

2.
Angew Chem Int Ed Engl ; 62(1): e202211552, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36334012

ABSTRACT

De novo metalloprotein design is a remarkable approach to shape protein scaffolds toward specific functions. Here, we report the design and characterization of Due Rame 1 (DR1), a de novo designed protein housing a di-copper site and mimicking the Type 3 (T3) copper-containing polyphenol oxidases (PPOs). To achieve this goal, we hierarchically designed the first and the second di-metal coordination spheres to engineer the di-copper site into a simple four-helix bundle scaffold. Spectroscopic, thermodynamic, and functional characterization revealed that DR1 recapitulates the T3 copper site, supporting different copper redox states, and being active in the O2 -dependent oxidation of catechols to o-quinones. Careful design of the residues lining the substrate access site endows DR1 with substrate recognition, as revealed by Hammet analysis and computational studies on substituted catechols. This study represents a premier example in the construction of a functional T3 copper site into a designed four-helix bundle protein.


Subject(s)
Copper , Metalloproteins , Copper/chemistry , Catechols/chemistry , Metalloproteins/chemistry , Oxidation-Reduction
3.
Proc Natl Acad Sci U S A ; 117(52): 33246-33253, 2020 12 29.
Article in English | MEDLINE | ID: mdl-33318174

ABSTRACT

We describe the de novo design of an allosterically regulated protein, which comprises two tightly coupled domains. One domain is based on the DF (Due Ferri in Italian or two-iron in English) family of de novo proteins, which have a diiron cofactor that catalyzes a phenol oxidase reaction, while the second domain is based on PS1 (Porphyrin-binding Sequence), which binds a synthetic Zn-porphyrin (ZnP). The binding of ZnP to the original PS1 protein induces changes in structure and dynamics, which we expected to influence the catalytic rate of a fused DF domain when appropriately coupled. Both DF and PS1 are four-helix bundles, but they have distinct bundle architectures. To achieve tight coupling between the domains, they were connected by four helical linkers using a computational method to discover the most designable connections capable of spanning the two architectures. The resulting protein, DFP1 (Due Ferri Porphyrin), bound the two cofactors in the expected manner. The crystal structure of fully reconstituted DFP1 was also in excellent agreement with the design, and it showed the ZnP cofactor bound over 12 Å from the dimetal center. Next, a substrate-binding cleft leading to the diiron center was introduced into DFP1. The resulting protein acts as an allosterically modulated phenol oxidase. Its Michaelis-Menten parameters were strongly affected by the binding of ZnP, resulting in a fourfold tighter Km and a 7-fold decrease in kcat These studies establish the feasibility of designing allosterically regulated catalytic proteins, entirely from scratch.


Subject(s)
Protein Engineering , Recombinant Proteins/chemistry , Allosteric Regulation , Biocatalysis , Coenzymes/metabolism , Ligands , Metals/metabolism , Models, Molecular , Oxidation-Reduction , Protein Domains , Protein Structure, Secondary
4.
Acc Chem Res ; 52(5): 1148-1159, 2019 05 21.
Article in English | MEDLINE | ID: mdl-30973707

ABSTRACT

De novo protein design represents an attractive approach for testing and extending our understanding of metalloprotein structure and function. Here, we describe our work on the design of DF (Due Ferri or two-iron in Italian), a minimalist model for the active sites of much larger and more complex natural diiron and dimanganese proteins. In nature, diiron and dimanganese proteins protypically bind their ions in 4-Glu, 2-His environments, and they catalyze diverse reactions, ranging from hydrolysis, to O2-dependent chemistry, to decarbonylation of aldehydes. In the design of DF, the position of each atom-including the backbone, the first-shell ligands, the second-shell hydrogen-bonded groups, and the well-packed hydrophobic core-was bespoke using precise mathematical equations and chemical principles. The first member of the DF family was designed to be of minimal size and complexity and yet to display the quintessential elements required for binding the dimetal cofactor. After thoroughly characterizing its structural, dynamic, spectroscopic, and functional properties, we added additional complexity in a rational stepwise manner to achieve increasingly sophisticated catalytic functions, ultimately demonstrating substrate-gated four-electron reduction of O2 to water. We also briefly describe the extension of these studies to the design of proteins that bind nonbiological metal cofactors (a synthetic porphyrin and a tetranuclear cluster), and a Zn2+/proton antiporting membrane protein. Together these studies demonstrate a successful and generally applicable strategy for de novo metalloprotein design, which might indeed mimic the process by which primordial metalloproteins evolved. We began the design process with a highly symmetrical backbone and binding site, by using point-group symmetry to assemble the secondary structures that position the amino acid side chains required for binding. The resulting models provided a rough starting point and initial parameters for the subsequent precise design of the final protein using modern methods of computational protein design. Unless the desired site is itself symmetrical, this process requires reduction of the symmetry or lifting it altogether. Nevertheless, the initial symmetrical structure can be helpful to restrain the search space during assembly of the backbone. Finally, the methods described here should be generally applicable to the design of highly stable and robust catalysts and sensors. There is considerable potential in combining the efficiency and knowledge base associated with homogeneous metal catalysis with the programmability, biocompatibility, and versatility of proteins. While the work reported here focuses on testing and learning the principles of natural metalloproteins by designing and studying proteins one at a time, there is also considerable potential for using designed proteins that incorporate both biological and nonbiological metal ion cofactors for the evolution of novel catalysts.


Subject(s)
Metalloproteins/chemistry , Protein Engineering/methods , Amino Acid Sequence , Binding Sites , Catalysis , Iron/chemistry , Ligands , Molecular Docking Simulation , Protein Conformation, alpha-Helical , Sequence Alignment
5.
Biopolymers ; 109(10): e23339, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30203532

ABSTRACT

De novo design provides an attractive approach, which allows one to test and refine the principles guiding metalloproteins in defining the geometry and reactivity of their metal ion cofactors. Although impressive progress has been made in designing proteins that bind transition metal ions including iron-sulfur clusters, the design of tetranuclear clusters with oxygen-rich environments remains in its infancy. In previous work, we described the design of homotetrameric four-helix bundles that bind tetra-Zn2+ clusters. The crystal structures of the helical proteins were in good agreement with the overall design, and the metal-binding and conformational properties of the helical bundles in solution were consistent with the crystal structures. However, the corresponding apo-proteins were not fully folded in solution. In this work, we design three peptides, based on the crystal structure of the original bundles. One of the peptides forms tetramers in aqueous solution in the absence of metal ions as assessed by CD and NMR. It also binds Zn2+ in the intended stoichiometry. These studies strongly suggest that the desired structure has been achieved in the apo state, providing evidence that the peptide is able to actively impart the designed geometry to the metal cluster.


Subject(s)
Metalloproteins/metabolism , Zinc/metabolism , Amino Acid Sequence , Circular Dichroism , Magnetic Resonance Spectroscopy , Metalloproteins/chemistry , Peptides/chemistry , Solutions
6.
Biopolymers ; 109(10): e23107, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29468636

ABSTRACT

Inspired by natural heme-proteins, scientists have attempted for decades to design efficient and selective metalloporphyrin-based oxidation catalysts. Starting from the pioneering work on small molecule mimics in the late 1970s, we have assisted to a tremendous progress in designing cages of different nature and complexity, able to accommodate metalloporphyrins. With the intent of tuning and controlling their reactivity, more and more sophisticated and diverse environments are continuously exploited. In this review, we will survey the current state of art in oxidation catalysis using iron- and manganese-porphyrins housed within designed or engineered protein cages. We will also examine the innovative metal-organic framework (MOF) systems, exploited to achieving an enzyme-like environment around the metalloporphyrin cofactor.


Subject(s)
Enzymes/metabolism , Iron/chemistry , Manganese/chemistry , Porphyrins/chemistry , Catalysis , Oxidation-Reduction
7.
Angew Chem Int Ed Engl ; 56(49): 15580-15583, 2017 12 04.
Article in English | MEDLINE | ID: mdl-29053213

ABSTRACT

Metalloproteins utilize O2 as an oxidant, and they often achieve a 4-electron reduction without H2 O2 or oxygen radical release. Several proteins have been designed to catalyze one or two-electron oxidative chemistry, but the de novo design of a protein that catalyzes the net 4-electron reduction of O2 has not been reported yet. We report the construction of a diiron-binding four-helix bundle, made up of two different covalently linked α2 monomers, through click chemistry. Surprisingly, the prototype protein, DF-C1, showed a large divergence in its reactivity from earlier DFs (DF: due ferri, two iron). DFs release the quinone imine and free H2 O2 in the oxidation of 4-aminophenol in the presence of O2 , whereas FeIII -DF-C1 sequesters the quinone imine into the active site, and catalyzes inside the scaffold an oxidative coupling between oxidized and reduced 4-aminophenol. The asymmetry of the scaffold allowed a fine-engineering of the substrate binding pocket, that ensures selectivity.


Subject(s)
Metalloproteins/chemistry , Oxygen/chemistry , Molecular Structure , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...