Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Res Lett ; 12(1): 477, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28774156

ABSTRACT

Al2O3:SiOC nanocomposites were synthesized by thermal treatment of fumed alumina nanoparticles modified by phenyltrimethoxysilane. The effect of annealing temperature in inert ambient on structure and photoluminescence of modified alumina powder was studied by IR spectroscopy as well as photoluminescence spectroscopy with ultraviolet and X-ray excitation. It is demonstrated that increase of annealing temperature results in formation of silica precipitates on the surface of alumina particles that is accompanied by development and spectral evolution of visible photoluminescence. These observations are discussed in terms of structural transformation of the surface of Al2O3 particles.

2.
J Phys Chem A ; 118(25): 4502-9, 2014 Jun 26.
Article in English | MEDLINE | ID: mdl-24918283

ABSTRACT

A comprehensive investigation of the electronic structure and fast relaxation processes in the excited states of new styryl base-type derivatives was performed using steady-state, pico-, and femtosecond time-resolved spectroscopic techniques. Linear photophysical parameters of new compounds, including steady-state absorption, fluorescence, and excitation anisotropy spectra, were obtained in a number of organic solvents at room temperature. A detailed analysis of the fluorescence lifetimes and ultrafast relaxation processes in the electronically excited state of the styryl bases revealed an important role of solvate dynamics and donor-acceptor strength of the molecular structures in the formation of their excited state absorption spectra. Experimental data were in good agreement with quantum chemical calculations at the time dependent density functional theory level, combined with a polarizable continuum model.


Subject(s)
Drug Design , Electronics , Fluorescent Dyes/chemistry , Pyridinium Compounds/chemistry , Quantum Theory , Spectrometry, Fluorescence/methods , Styrene/chemistry , Computer Simulation , Fluorescence , Models, Molecular , Molecular Structure , Solvents
3.
J Chem Phys ; 130(8): 084901, 2009 Feb 28.
Article in English | MEDLINE | ID: mdl-19256621

ABSTRACT

A comparative study of steady-state and time-resolved photoluminescence of para-sexiphenyl (PSP) films grown by organic molecular beam epitaxy (OMBE) and hot wall epitaxy (HWE) under comparable conditions is presented. Using different template substrates [mica(001) and KCl(001) surfaces] as well as different OMBE growth conditions has enabled us to vary greatly the morphology of the PSP crystallites while keeping their chemical structure virtually untouched. We prove that the broad redshifted emission band has a structure-related origin rather than being due to monomolecular oxidative defects. We conclude that the growth conditions and type of template substrate impacts substantially on the film morphology (measured by atomic force microscopy) and emission properties of the PSP films. The relative intensity of the defect emission band observed in the delayed spectra was found to correlate with the structural quality of PSP crystallites. In particular, the defect emission has been found to be drastically suppressed when (i) a KCl template substrate was used instead of mica in HWE-grown films, and (ii) in the OMBE-grown films dominated by growth mounds composed of upright standing molecules as opposed to the films consisting of crystallites formed by molecules lying parallel to the substrate.

SELECTION OF CITATIONS
SEARCH DETAIL
...