Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Chemphyschem ; 24(21): e202300310, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37560983

ABSTRACT

Conjugated small molecules are advanced semiconductor materials with attractive physicochemical and optoelectronic properties enabling the development of next-generation electronic devices. The charge carrier mobility of small molecules strongly influences the efficiency of organic and hybrid electronics based on them. Herein, we report the synthesis of four novel small molecules and their investigation with regard to the impact of molecular structure and thermal treatment of films on charge carriers' mobility. The benzodithiophene-containing compounds (BDT) were shown to be more promising in terms of tuning the morphology upon thermal treatment. Impressive enhancement of hole mobilities by more than 50 times was found for annealed films based on a compound M4 comprising triisopropylsilyl-functionalized BDT core. The results provide a favorable experience and strategy for the rational design of state-of-the-art organic semiconductor materials (OSMs) and for improving their charge-transport characteristics.

2.
Nanomaterials (Basel) ; 13(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37299617

ABSTRACT

A biocompatible metal-organic framework MIL-100(Fe) loaded with the active compounds of tea tree essential oil was used to produce composite films based on κ-carrageenan and hydroxypropyl methylcellulose with the uniform distribution of the particles of this filler. The composite films featured great UV-blocking properties, good water vapor permeability, and modest antibacterial activity against both Gram-negative and Gram-positive bacteria. The use of metal-organic frameworks as containers of hydrophobic molecules of natural active compounds makes the composites made from naturally occurring hydrocolloids attractive materials for active packaging of food products.

3.
Polymers (Basel) ; 15(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36850132

ABSTRACT

We report the synthesis of three (3) linear triblock terpolymers, two (2) of the ABC type and one (1) of the BAC type, where A, B and C correspond to three chemically incompatible blocks such as polystyrene (PS), poly(butadiene) of exclusively (~100% vinyl-type) -1,2 microstructure (PB1,2) and poly(dimethylsiloxane) (PDMS) respectively. Living anionic polymerization enabled the synthesis of narrowly dispersed terpolymers with low average molecular weights and different composition ratios, as verified by multiple molecular characterization techniques. To evaluate their self-assembly behavior, transmission electron microscopy and small-angle X-ray scattering experiments were conducted, indicating the effect of asymmetric compositions and interactions as well as inversed segment sequence on the adopted morphologies. Furthermore, post-polymerization chemical modification reactions such as hydroboration and oxidation were carried out on the extremely low molecular weight PB1,2 in all three terpolymer samples. To justify the successful incorporation of -OH groups in the polydiene segments and the preparation of polymeric brushes, various molecular, thermal, and surface analysis measurements were carried out. The synthesis and chemical modification reactions on such triblock terpolymers are performed for the first time to the best of our knowledge and constitute a promising route to design polymers for nanotechnology applications.

4.
Molecules ; 27(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36500425

ABSTRACT

Donor-acceptor conjugated polymers are considered advanced semiconductor materials for the development of thin-film electronics. One of the most attractive families of polymeric semiconductors in terms of photovoltaic applications are benzodithiophene-based polymers owing to their highly tunable electronic and physicochemical properties, and readily scalable production. In this work, we report the synthesis of three novel push-pull benzodithiophene-based polymers with different side chains and their investigation as hole transport materials (HTM) in perovskite solar cells (PSCs). It is shown that polymer P3 that contains triisopropylsilyl side groups exhibits better film-forming ability that, along with high hole mobilities, results in increased characteristics of PSCs. Encouraging a power conversion efficiency (PCE) of 17.4% was achieved for P3-based PSCs that outperformed the efficiency of devices based on P1, P2, and benchmark PTAA polymer. These findings feature the great potential of benzodithiophene-based conjugated polymers as dopant-free HTMs for the fabrication of efficient perovskite solar cells.


Subject(s)
Calcium Compounds , Polymers , Oxides , Semiconductors
5.
Int J Mol Sci ; 23(21)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36362163

ABSTRACT

Perovskite solar cells (PSCs) currently reach high efficiencies, while their insufficient stability remains an obstacle to their technological commercialization. The introduction of hole-transport materials (HTMs) into the device structure is a key approach for enhancing the efficiency and stability of devices. However, currently, the influence of the HTM structure or properties on the characteristics and operational stability of PSCs remains insufficiently studied. Herein, we present four novel push-pull small molecules, H1-4, with alternating thiophene and benzothiadiazole or fluorine-loaded benzothiadiazole units, which contain branched and linear alkyl chains in the different positions of terminal thiophenes to evaluate the impact of HTM structure on PSC performance. It is demonstrated that minor changes in the structure of HTMs significantly influence their behavior in thin films. In particular, H3 organizes into highly ordered lamellar structures in thin films, which proves to be crucial in boosting the efficiency and stability of PSCs. The presented results shed light on the crucial role of the HTM structure and the morphology of films in the performance of PSCs.


Subject(s)
Solar Energy , Thiophenes/chemistry , Halogenation
6.
Phys Chem Chem Phys ; 24(26): 16041-16049, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35731226

ABSTRACT

Crystalline and liquid-crystalline conjugated small molecules represent a promising family of semiconductor materials for organic electronics applications. The control of the morphology and optoelectronic properties of small molecules allows tuning their charge transport characteristics and hence, improving the performance of electronic devices. Here, we designed four pentamers based on alternating thiophene and benzothiadiazole moieties and investigated the effect of their structure on the optoelectronic properties, ordering and charge transport characteristics. It is shown that thermal annealing of conjugated pentamers leads to remarkable changes in the microstructure and domain texture of thin films. As a result, an increase in hole mobility for compound M4 by one order of magnitude was achieved. These findings provide a valuable insight into the structure-property relationships for designed small molecules featuring them as promising semiconductor materials for further developing high-performance organic electronics.

7.
Polymers (Basel) ; 13(23)2021 Nov 28.
Article in English | MEDLINE | ID: mdl-34883671

ABSTRACT

An approach to obtaining various nanostructures utilizing a well-studied polystyrene-b-poly(isoprene) or PS-b-PI diblock copolymer system through chemical modification reactions is reported. The complete hydrogenation and partial sulfonation to the susceptible carbon double bonds of the PI segment led to the preparation of [polystyrene-b-poly(ethylene-alt-propylene)] as well as [polystyrene-b-poly(sulfonated isoprene-co-isoprene)], respectively. The hydrogenation of the polyisoprene block results in enhanced segmental immiscibility, whereas the relative sulfonation induces an amphiphilic character in the final modified material. The successful synthesis of the pristine diblock copolymer through anionic polymerization and the relative chemical modification reactions were verified using several molecular and structural characterization techniques. The thin film structure-properties relationship was investigated using atomic force microscopy under various conditions such as different solvents and annealing temperatures. Small-angle X-ray scattering was employed to identify the different observed nanostructures and their evolution upon thermal annealing.

8.
Nanomaterials (Basel) ; 10(8)2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32751589

ABSTRACT

The synthesis, molecular and morphological characterization of a 3-miktoarm star terpolymer of polystyrene (PS, M¯n = 61.0 kg/mol), polybutadiene (PB, M¯n = 38.2 kg/mol) and polyisoprene (PI, M¯n = 29.2 kg/mol), corresponding to volume fractions (φ) of 0.46, 0.31 and 0.23 respectively, was studied. The major difference of the present material from previous ABC miktoarm stars (which is a star architecture bearing three different segments, all connected to a single junction point) with the same block components is the high 3,4-microstructure (55%) of the PI chains. The interaction parameter and the degree of polymerization of the two polydienes is sufficiently positive to create a three-phase microdomain structure as evidenced by differential scanning calorimetry and transmission electron microscopy (TEM). These results in combination with small-angle X-ray scattering (SAXS) and birefringence experiments suggest a cubic tricontinuous network structure, based on the I4132 space group never reported previously for such an architecture.

9.
J Phys Chem Lett ; 8(7): 1651-1656, 2017 Apr 06.
Article in English | MEDLINE | ID: mdl-28322051

ABSTRACT

We present an all-inorganic photoactive material composed of Ag2PbI4 and PbI2, which shows unexpectedly good photovoltaic performance in planar junction solar cells delivering external quantum efficiencies of ∼60% and light power conversion efficiencies of ∼3.9%. The revealed characteristics are among the best reported to date for metal halides with nonperovskite crystal structure. Most importantly, the obtained results suggest a possibility of reaching high photovoltaic efficiencies for binary and, probably, also ternary blends of different inorganic semiconductor materials. This approach, resembling the bulk heterojunction concept guiding the development of organic photovoltaics for two decades, opens wide opportunities for rational design of novel inorganic and hybrid materials for efficient and sustainable photovoltaic technologies.

10.
J Phys Chem Lett ; 8(1): 67-72, 2017 Jan 05.
Article in English | MEDLINE | ID: mdl-27936746

ABSTRACT

We report here all inorganic CsPbI3 planar junction perovskite solar cells fabricated by thermal coevaporation of CsI and PbI2 precursors. The best devices delivered power conversion efficiency (PCE) of 9.3 to 10.5%, thus coming close to the reference MAPbI3-based devices (PCE ≈ 12%). These results emphasize that all inorganic lead halide perovskites can successfully compete in terms of photovoltaic performance with the most widely used hybrid materials such as MAPbI3.

11.
ACS Macro Lett ; 5(2): 163-167, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-35614692

ABSTRACT

We demonstrate specific interface-templated crystallization behavior of biocompatible amphiphilic poly(ethylene oxide)-b-poly(ε-caprolactone) (PEO-b-PCL) block copolymers enabling triggered shaping of the curvature of the oil/water interface and controlled phase inversion, including the formation of stable multiple emulsions. Water-born anisotropic micelles of PEO-b-PCL block copolymers self-assemble at the oil-water interface in a multilayer form and undergo conformational rearrangements into unique semicrystalline multilamellar shells, for which curvature (type of emulsion) can be tuned by the molecular architecture (volume fractions of the blocks) and/or by the temperature. The latter trigger affects both the solubility of the PEO block in water and the semicrystalline state of the PCL block. Remarkably, multilamellar semicrystalline shells provide both long-term stability and enhanced barrier properties of toluene-water emulsions, as well as the fast change of the bending, leading to thermo-induced phase inversion. These findings signify the development of novel practical mechanisms for controlled triggered encapsulation and release systems.

12.
Chem Commun (Camb) ; 50(57): 7639-41, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-24893780

ABSTRACT

Here we report a systematic investigation of indigo thin films grown on different dielectric underlayers. It has been revealed that aliphatic hydrocarbon chains serve as templates inducing the formation of a new crystal modification of indigo which possesses advanced charge transport properties and affords a dramatic improvement in the electrical performance of organic field-effect transistors.

SELECTION OF CITATIONS
SEARCH DETAIL
...