Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters










Publication year range
1.
Nucleic Acids Res ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869070

ABSTRACT

Translational research on the Cre/loxP recombination system focuses on enhancing its specificity by modifying Cre/DNA interactions. Despite extensive efforts, the exact mechanisms governing Cre discrimination between substrates remains elusive. Cre recognizes 13 bp inverted repeats, initiating recombination in the 8 bp spacer region. While literature suggests that efficient recombination proceeds between lox sites with non-loxP spacer sequences when both lox sites have matching spacers, experimental validation for this assumption is lacking. To fill this gap, we investigated target site variations of identical pairs of the loxP 8 bp spacer region, screening 6000 unique loxP-like sequences. Approximately 84% of these sites exhibited efficient recombination, affirming the plasticity of spacer sequences for catalysis. However, certain spacers negatively impacted recombination, emphasizing sequence dependence. Directed evolution of Cre on inefficiently recombined spacers not only yielded recombinases with enhanced activity but also mutants with reprogrammed selective activity. Mutations altering spacer specificity were identified, and molecular modelling and dynamics simulations were used to investigate the possible mechanisms behind the specificity switch. Our findings highlight the potential to fine-tune site-specific recombinases for spacer sequence specificity, offering a novel concept to enhance the applied properties of designer-recombinases for genome engineering applications.

2.
Life Sci Alliance ; 7(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38228372

ABSTRACT

Tumor cells subvert immune surveillance or lytic stress by harnessing inhibitory signals. Hence, bispecific antibodies have been developed to direct CTLs to the tumor site and foster immune-dependent cytotoxicity. Although applied with success, T cell-based immunotherapies are not universally effective partially because of the expression of pro-survival factors by tumor cells protecting them from apoptosis. Here, we report a CRISPR/Cas9 screen in human non-small cell lung cancer cells designed to identify genes that confer tumors with the ability to evade the cytotoxic effects of CD8+ T lymphocytes engaged by bispecific antibodies. We show that the gene C22orf46 facilitates pro-survival signals and that tumor cells devoid of C22orf46 expression exhibit increased susceptibility to T cell-induced apoptosis and stress by genotoxic agents. Although annotated as a non-coding gene, we demonstrate that C22orf46 encodes a nucleolar protein, hereafter referred to as "Tumor Apoptosis Associated Protein 1," up-regulated in lung cancer, which displays remote homologies to the BH domain containing Bcl-2 family of apoptosis regulators. Collectively, the findings establish TAAP1/C22orf46 as a pro-survival oncogene with implications to therapy.


Subject(s)
Antibodies, Bispecific , Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/metabolism , Nuclear Proteins , Antibodies, Bispecific/therapeutic use , Antineoplastic Agents/pharmacology
3.
Biomaterials ; 297: 122105, 2023 06.
Article in English | MEDLINE | ID: mdl-37031548

ABSTRACT

The WNT signaling pathway is a central regulator of bone development and regeneration. Functional alterations of WNT ligands and inhibitors are associated with a variety of bone diseases that affect bone fragility and result in a high medical and socioeconomic burden. Hence, this cellular pathway has emerged as a novel target for bone-protective therapies, e.g. in osteoporosis. Here, we investigated glycosaminoglycan (GAG) recognition by Dickkopf-1 (DKK1), a potent endogenous WNT inhibitor, and the underlying functional implications in order to develop WNT signaling regulators. In a multidisciplinary approach we applied in silico structure-based de novo design strategies and molecular dynamics simulations combined with synthetic chemistry and surface plasmon resonance spectroscopy to Rationally Engineer oligomeric Glycosaminoglycan derivatives (REGAG) with improved neutralizing properties for DKK1. In vitro and in vivo assays show that the GAG modification to obtain REGAG translated into increased WNT pathway activity and improved bone regeneration in a mouse calvaria defect model with critical size bone lesions. Importantly, the developed REGAG outperformed polymeric high-sulfated hyaluronan (sHA3) in enhancing bone healing up to 50% due to their improved DKK1 binding properties. Thus, rationally engineered GAG variants may represent an innovative strategy to develop novel therapeutic approaches for regenerative medicine.


Subject(s)
Bone Diseases , Bone Regeneration , Glycosaminoglycans , Intercellular Signaling Peptides and Proteins , Animals , Mice , Bone and Bones/metabolism , Glycosaminoglycans/metabolism , Wnt Signaling Pathway
4.
J Med Chem ; 66(6): 3818-3851, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36867428

ABSTRACT

The potential of designing irreversible alkyne-based inhibitors of cysteine cathepsins by isoelectronic replacement in reversibly acting potent peptide nitriles was explored. The synthesis of the dipeptide alkynes was developed with special emphasis on stereochemically homogeneous products obtained in the Gilbert-Seyferth homologation for C≡C bond formation. Twenty-three dipeptide alkynes and 12 analogous nitriles were synthesized and investigated for their inhibition of cathepsins B, L, S, and K. Numerous combinations of residues at positions P1 and P2 as well as terminal acyl groups allowed for the derivation of extensive structure-activity relationships, which were rationalized by computational covalent docking for selected examples. The determined inactivation constants of the alkynes at the target enzymes span a range of >3 orders of magnitude (3-10 133 M-1 s-1). Notably, the selectivity profiles of alkynes do not necessarily reflect those of the nitriles. Inhibitory activity at the cellular level was demonstrated for selected compounds.


Subject(s)
Cathepsins , Dipeptides , Cathepsins/metabolism , Dipeptides/chemistry , Cysteine , Cysteine Proteinase Inhibitors/chemistry , Cathepsin B , Structure-Activity Relationship , Nitriles/chemistry
6.
Sci Rep ; 12(1): 13326, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35922533

ABSTRACT

Transglutaminases (TGs) catalyze the covalent crosslinking of proteins via isopeptide bonds. The most prominent isoform, TG2, is associated with physiological processes such as extracellular matrix (ECM) stabilization and plays a crucial role in the pathogenesis of e.g. fibrotic diseases, cancer and celiac disease. Therefore, TG2 represents a pharmacological target of increasing relevance. The glycosaminoglycans (GAG) heparin (HE) and heparan sulfate (HS) constitute high-affinity interaction partners of TG2 in the ECM. Chemically modified GAG are promising molecules for pharmacological applications as their composition and chemical functionalization may be used to tackle the function of ECM molecular systems, which has been recently described for hyaluronan (HA) and chondroitin sulfate (CS). Herein, we investigate the recognition of GAG derivatives by TG2 using an enzyme-crosslinking activity assay in combination with in silico molecular modeling and docking techniques. The study reveals that GAG represent potent inhibitors of TG2 crosslinking activity and offers atom-detailed mechanistic insights.


Subject(s)
Glycosaminoglycans , Protein Glutamine gamma Glutamyltransferase 2 , Glycosaminoglycans/metabolism , Heparitin Sulfate/metabolism , Transglutaminases/metabolism
7.
Comput Struct Biotechnol J ; 20: 989-1001, 2022.
Article in English | MEDLINE | ID: mdl-35242289

ABSTRACT

Protein intrinsically disordered regions (IDRs) play pivotal roles in molecular recognition and regulatory processes through structural disorder-to-order transitions. To understand and exploit the distinctive functional implications of IDRs and to unravel the underlying molecular mechanisms, structural disorder-to-function relationships need to be deciphered. The DNA site-specific recombinase system Cre/loxP represents an attractive model to investigate functional molecular mechanisms of IDRs. Cre contains a functionally dispensable disordered N-terminal tail, which becomes indispensable in the evolved Tre/loxLTR recombinase system. The difficulty to experimentally obtain structural information about this tail has so far precluded any mechanistic study on its involvement in DNA recombination. Here, we use in vitro and in silico evolution data, conformational dynamics, AI-based folding simulations, thermodynamic stability calculations, mutagenesis and DNA recombination assays to investigate how evolution and the dynamic behavior of this IDR may determine distinct functional properties. Our studies suggest that partial conformational order in the N-terminal tail of Tre recombinase and its packing to a conserved hydrophobic surface on the protein provide thermodynamic stability. Based on our results, we propose a link between protein stability and function, offering new plausible atom-detailed mechanistic insights into disorder-function relationships. Our work highlights the potential of N-terminal tails to be exploited for regulation of the activity of Cre-like tyrosine-type SSRs, which merits future investigations and could be of relevance in future rational engineering for their use in biotechnology and genomic medicine.

8.
Nucleic Acids Res ; 50(2): 1174-1186, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34951450

ABSTRACT

Tyrosine site-specific recombinases (SSRs) represent a versatile genome editing tool with considerable therapeutic potential. Recent developments to engineer and evolve SSRs into heterotetramers to improve target site flexibility signified a critical step towards their broad utility in genome editing. However, SSR monomers can form combinations of different homo- and heterotetramers in cells, increasing their off-target potential. Here, we discover that two paired mutations targeting residues implicated in catalysis lead to simple obligate tyrosine SSR systems, where the presence of all distinct subunits to bind as a heterotetramer is obligatory for catalysis. Therefore, only when the paired mutations are applied as single mutations on each recombinase subunit, the engineered SSRs can efficiently recombine the intended target sequence, while the subunits carrying the point mutations expressed in isolation are inactive. We demonstrate the utility of the obligate SSR system to improve recombination specificity of a designer-recombinase for a therapeutic target in human cells. Furthermore, we show that the mutations render the naturally occurring SSRs, Cre and Vika, obligately heteromeric for catalytic proficiency, providing a straight-forward approach to improve their applied properties. These results facilitate the development of safe and effective therapeutic designer-recombinases and advance our mechanistic understanding of SSR catalysis.


Subject(s)
DNA Nucleotidyltransferases/metabolism , Gene Editing , Genetic Engineering/methods , Recombination, Genetic , HEK293 Cells , Humans
9.
ACS Omega ; 6(39): 25350-25360, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34632193

ABSTRACT

In this work, anion-π interactions between sulfate groups (SO4 2-) and protein aromatic amino acids (AAs) (histidine protonated (HisP), histidine neutral (HisN), tyrosine (Tyr), tryptophan (Trp), and phenylalanine (Phe)) in an aqueous environment have been analyzed using quantum chemical (QC) calculations and molecular dynamics (MD) simulations. Sulfates can occur naturally in solution and can be contained in biomolecules playing relevant roles in their biological function. In particular, the presence of sulfate groups in glycosaminoglycans such as heparin and heparan sulfate has been shown to be relevant for protein and cellular communication and, consequently, for tissue regeneration. Therefore, anion-π interactions between sulfate groups and aromatic residues represent a relevant aspect to investigate. QC results show that such an anion-π mode of interaction between SO4 2- and aromatic AAs is only possible in the presence of water molecules, in the absence of any other cooperative non-covalent interactions. Protonated histidine stands out in terms of its enhancement in the magnitude of interaction strength on solvation. Other AAs such as non-protonated histidine, tyrosine, and phenylalanine can stabilize anion-π interactions on solvation, albeit with weak interaction energy. Tryptophan does not exhibit any anion-π mode of interaction with SO4 2-. The order of magnitude of the interaction of aromatic AAs with SO4 2- on microsolvation is HisP > HisN > Tyr > Trp > Phe. Atoms in molecules (AIM) analysis illustrates the significance of water molecules in stabilizing the divalent SO4 2- anion over the π surface of the aromatic AAs. MD simulation analysis shows that the order of magnitude of the interaction of SO4 2- with aromatic AAs in macroscopic solvation is HisP > HisN, Tyr, Trp > Phe, which is very much in line with the QC results. Spatial distribution function analysis illustrates that protonated histidine alone is capable of establishing the anion-π interaction with SO4 2- in the solution phase. This study sheds light on the understanding of anion-π interactions between SO4 2- and aromatic AAs such as His and Tyr observed in protein crystal structures and the significance of water molecules in stabilizing such interactions, which is not feasible otherwise.

10.
Biol Chem ; 402(11): 1441-1452, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34280958

ABSTRACT

Angiogenesis is an important physiological process playing a crucial role in wound healing and cancer progression. Vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF) are key players in angiogenesis. Based on previous findings regarding the modulation of VEGF activity by glycosaminoglycans (GAG), here we explore the interaction of hyaluronan (HA)-based GAG with PDGF and its receptor PDGFR-ß by applying molecular modeling and dynamics simulations in combination with surface plasmon resonance (SPR). Computational analysis on the interaction of oligo-hyaluronan derivatives with different sulfation pattern and functionalization shows that these GAG interact with PDGF in relevant regions for receptor recognition, and that high sulfation as well as modification with the TAMRA group convey stronger binding. On the other hand, the studied oligo-hyaluronan derivatives are predicted to scarcely recognize PDGFR-ß. SPR results are in line with the computational predictions regarding the binding pattern of HA tetrasaccharide (HA4) derivatives to PDGF and PDGFR-ß. Furthermore, our experimental results also show that the complexation of PDGF to PDGFR-ß can be modulated by HA4 derivatives. The results found open the path for considering HA4 derivatives as potential candidates to be exploited for modulation of the PDGF/PDGFR-ß signaling system in angiogenesis and related disease conditions.


Subject(s)
Hyaluronic Acid/chemistry , Platelet-Derived Growth Factor/chemistry , Receptor, Platelet-Derived Growth Factor beta/chemistry , Carbohydrate Conformation , Humans , Models, Molecular , Recombinant Proteins/chemistry , Surface Plasmon Resonance
11.
ACS Appl Bio Mater ; 4(1): 494-506, 2021 01 18.
Article in English | MEDLINE | ID: mdl-35014301

ABSTRACT

In order to restore the regeneration capacity of large-size vascularized tissue defects, innovative biomaterial concepts are required. Vascular endothelial growth factor (VEGF165) is a key factor of angiogenesis interacting with sulfated glycosaminoglycans (sGAG) within the extracellular matrix. As this interplay mainly controls and directs the biological activity of VEGF165, we used chemically modified sGAG derivatives to evaluate the structural requirements of sGAG for controlling and tuning VEGF165 function and to translate these findings into the design of biomaterials. The in-depth analysis of this interaction by surface plasmon resonance and ELISA studies in combination with molecular modeling stressed the relevance of the substitution position, degree of sulfation, and carbohydrate backbone of GAG. Acrylated hyaluronan (HA-AC)/collagen (coll)-based hydrogels containing cross-linked acrylated, sulfated hyaluronan (sHA-AC) derivatives with different substitution patterns or an acrylated chondroitin sulfate (CS-AC) derivative function as multivalent carbohydrate-based scaffolds for VEGF165 delivery with multiple tuning capacities. Depending on the substitution pattern of sGAG, the release of biologically active VEGF165 was retarded in a defined manner compared to pure HA/coll gels, which further controlled the VEGF165-induced stimulation of endothelial cell proliferation and extended morphology of cells. This indicates that sGAG can act as modulators of protein interaction profiles of HA/coll hydrogels. In addition, sHA-AC-containing gels with and even without VEGF165 strongly stimulate endothelial cell proliferation compared to gels containing only CS-AC or HA-AC. Thus, HA/coll-based hydrogels containing cross-linked sHA-AC are biomimetic materials able to directly influence endothelial cells in vitro, which might translate into an improved healing of injured vascularized tissues.


Subject(s)
Collagen/chemistry , Glycosaminoglycans/chemistry , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Vascular Endothelial Growth Factor A/metabolism , Animals , Cell Line , Cell Proliferation/drug effects , Endothelial Cells/cytology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Glycosaminoglycans/metabolism , Hydrogels/pharmacology , Microscopy, Fluorescence , Protein Binding , Sulfates/chemistry , Swine , Vascular Endothelial Growth Factor A/chemistry
12.
Sci Rep ; 10(1): 13985, 2020 08 19.
Article in English | MEDLINE | ID: mdl-32814809

ABSTRACT

The tyrosine-type site-specific DNA recombinase Cre recombines its target site, loxP, with high activity and specificity without cross-recombining the target sites of highly related recombinases. Understanding how Cre achieves this precision is key to be able to rationally engineer site-specific recombinases (SSRs) for genome editing applications. Previous work has revealed key residues for target site selectivity in the Cre/loxP and the related Dre/rox recombinase systems. However, enzymes in which these residues were changed to the respective counterpart only showed weak activity on the foreign target site. Here, we use molecular modeling and dynamics simulation techniques to comprehensively explore the mechanisms by which these residues determine target recognition in the context of their flanking regions in the protein-DNA interface, and we establish a structure-based rationale for the design of improved recombination activities. Our theoretical models reveal that nearest-neighbors to the specificity-determining residues are important players for enhancing SSR activity on the foreign target site. Based on the established rationale, we design new Cre variants with improved rox recombination activities, which we validate experimentally. Our work provides new insights into the target recognition mechanisms of Cre-like recombinases and represents an important step towards the rational design of SSRs for applied genome engineering.


Subject(s)
Amino Acids/chemistry , DNA Nucleotidyltransferases/chemistry , DNA/chemistry , Genetic Engineering/methods , Integrases/chemistry , Recombination, Genetic , Amino Acid Sequence , Amino Acids/genetics , Amino Acids/metabolism , Animals , Binding Sites/genetics , DNA/genetics , DNA/metabolism , DNA Nucleotidyltransferases/genetics , DNA Nucleotidyltransferases/metabolism , Humans , Integrases/genetics , Integrases/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Nucleic Acid Conformation , Protein Binding , Protein Domains , Sequence Homology, Amino Acid
13.
Sci Rep ; 9(1): 18143, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31792253

ABSTRACT

Pathological healing characterized by abnormal angiogenesis presents a serious burden to patients' quality of life requiring innovative treatment strategies. Glycosaminoglycans (GAG) are important regulators of angiogenic processes. This experimental and computational study revealed how sulfated GAG derivatives (sGAG) influence the interplay of vascular endothelial growth factor (VEGF)165 and its heparin-binding domain (HBD) with the signaling receptor VEGFR-2 up to atomic detail. There was profound evidence for a HBD-GAG-HBD stacking configuration. Here, the sGAG act as a "molecular glue" leading to recognition modes in which sGAG interact with two VEGF165-HBDs. A 3D angiogenesis model demonstrated the dual regulatory role of high-sulfated derivatives on the biological activity of endothelial cells. While GAG alone promote sprouting, they downregulate VEGF165-mediated signaling and, thereby, elicit VEGF165-independent and -dependent effects. These findings provide novel insights into the modulatory potential of sGAG derivatives on angiogenic processes and point towards their prospective application in treating abnormal angiogenesis.


Subject(s)
Glycosaminoglycans/metabolism , Hyaluronic Acid/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Binding Sites , Chondroitin Sulfates/pharmacology , Computer Simulation , Glycosaminoglycans/chemistry , Human Umbilical Vein Endothelial Cells , Humans , Immobilized Proteins/metabolism , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Neovascularization, Physiologic , Phosphorylation , Protein Domains , Spheroids, Cellular , Structure-Activity Relationship , Surface Plasmon Resonance , Vascular Endothelial Growth Factor A/chemistry , Vascular Endothelial Growth Factor Receptor-2/metabolism
14.
Sci Rep ; 9(1): 4905, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30894640

ABSTRACT

The extracellular matrix (ECM) is a highly dynamic network constantly remodeled by a fine-tuned protein formation and degradation balance. Matrix metalloproteinases (MMPs) constitute key orchestrators of ECM degradation. Their activity is controlled by tissue inhibitors of metalloproteinases (TIMPs) and glycosaminoglycans (GAG). Here, we investigated the molecular interplay of MMP2 with different GAG (chondroitin sulfate, hyaluronan (HA), sulfated hyaluronan (SH) and heparin (HE)) and the impact of GAG on MMP2/TIMP3 complex formation using in vitro-experiments with human bone marrow stromal cells, in silico docking and molecular dynamics simulations. SH and HE influenced MMP2 and TIMP3 protein levels and MMP2 activity. Only SH supported the alignment of both proteins in fibrillar-like structures, which, based on our molecular models, would be due to a stabilization of the interactions between MMP2-hemopexin domain and TIMP3-C-terminal tail. Dependent on the temporal sequential order in which the final ternary complex was formed, our models indicated that SH and HA can affect TIMP3-induced MMP2 inhibition through precluding or supporting their interactions, respectively. Our combined experimental and theoretical approach provides valuable new insights on how GAG interfere with MMP2 activity and MMP2/TIMP3 complex formation. The results obtained evidence GAG as promising molecules for fine-balanced intervention of ECM remodeling.


Subject(s)
Glycosaminoglycans/pharmacology , Matrix Metalloproteinase 2/metabolism , Tissue Inhibitor of Metalloproteinase-3/metabolism , Adult , Cells, Cultured , Extracellular Matrix/metabolism , Humans , Male , Mesenchymal Stem Cells , Molecular Docking Simulation , Protein Binding , Protein Conformation
15.
Chem Sci ; 10(3): 866-878, 2019 Jan 21.
Article in English | MEDLINE | ID: mdl-30774881

ABSTRACT

Binding of sulfated glycosaminoglycans (GAG) to a wide spectrum of extracellular regulatory proteins is crucial for physiological processes such as cell growth, migration, tissue homeostasis and repair. Thus, GAG derivatives exhibit great relevance in the development of innovative biomaterials for tissue regeneration therapies. We present a synthetic strategy for the preparation of libraries of defined sulfated oligohyaluronans as model GAG systematically varied in length, sulfation pattern and anomeric substitution in order to elucidate the effects of these parameters on GAG recognition by regulatory proteins. Through an experimental and computational approach using fluorescence polarization, ITC, docking and molecular dynamics simulations we investigate the binding of these functionalized GAG derivatives to ten representative regulatory proteins including IL-8, IL-10, BMP-2, sclerostin, TIMP-3, CXCL-12, TGF-ß, FGF-1, FGF-2, and AT-III, and we establish structure-activity relationships for GAG recognition. Binding is mainly driven by enthalpy with only minor entropic contributions. In several cases binding is determined by GAG length, and in all cases by the position and number of sulfates. Affinities strongly depend on the anomeric modification of the GAG. Highest binding affinities are effected by anomeric functionalization with large fluorophores and by GAG dimerization. Our experimental and theoretical results suggest that the diversity of GAG binding sites and modes is responsible for the observed high affinities and other binding features. The presented new insights into GAG-protein recognition will be of relevance to guide the design of GAG derivatives with customized functions for the engineering of new biomaterials.

16.
Acta Biomater ; 86: 135-147, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30660005

ABSTRACT

Functional biomaterials that are able to bind, stabilize and release bioactive proteins in a defined manner are required for the controlled delivery of such to the desired place of action, stimulating wound healing in health-compromised patients. Glycosaminoglycans (GAG) represent a very promising group of components since they may be functionally engineered and are well tolerated by the recipient tissues due to their relative immunological inertness. Ligands of the Epidermal Growth Factor (EGF) receptor (EGFR) activate keratinocytes and dermal fibroblasts and, thus, contribute to skin wound healing. Heparin-binding EGF-like growth factor (HB-EGF) bound to GAG in biomaterials (e.g. hydrogels) might serve as a reservoir that induces prolonged activation of the EGF receptor and to recover disturbed wound healing. Based on previous findings, the capacity of hyaluronan (HA) and its sulfated derivatives (sHA) to bind and release HB-EGF from HA/collagen-based hydrogels was investigated. Docking and molecular dynamics analysis of a molecular model of HB-EGF led to the identification of residues in the heparin-binding domain of the protein being essential for the recognition of GAG derivatives. Furthermore, molecular modeling and surface plasmon resonance (SPR) analyses demonstrated that sulfation of HA increases binding strength to HB-EGF thus providing a rationale for the development of sHA-containing hydrogels. In line with computational observations and in agreement with SPR results, gels containing sHA displayed a retarded HB-EGF release in vitro compared to pure HA/collagen gels. Hydrogels containing HA and collagen or a mixture with sHA were shown to bind and release bioactive HB-EGF over at least 72 h, which induced keratinocyte migration, EGFR-signaling and HGF expression in dermal fibroblasts. Importantly, hydrogels containing sHA strongly increased the effectivity of HB-EGF in inducing epithelial tip growth in epithelial wounds shown in a porcine skin organ culture model. These findings suggest that hydrogels containing HA and sHA can be engineered for smart and effective wound dressings. STATEMENT OF SIGNIFICANCE: Immobilization and sustained release of recombinant proteins from functional biomaterials might overcome the limited success of direct application of non-protected solute growth factors during the treatment of impaired wound healing. We developed HA/collagen-based hydrogels supplemented with acrylated sulfated HA for binding and release of HB-EGF. We analyzed the molecular basis of HB-EGF interaction with HA and its chemical derivatives by in silico modeling and surface plasmon resonance. These hydrogels bind HB-EGF reversibly. Using different in vitro assays and organ culture we demonstrate that the introduction of sulfated HA into the hydrogels significantly increases the effectivity of HB-EGF action on target cells. Therefore, sulfated HA-containing hydrogels are promising functional biomaterials for the development of mediator releasing wound dressings.


Subject(s)
Collagen/pharmacology , Heparin-binding EGF-like Growth Factor/pharmacology , Hyaluronic Acid/pharmacology , Hydrogels/pharmacology , Sulfates/pharmacology , Wound Healing/drug effects , Animals , Collagen/chemistry , Delayed-Action Preparations/pharmacology , Epidermis/drug effects , Fibroblasts/drug effects , Glycosaminoglycans/metabolism , Humans , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats , Sulfates/chemistry , Swine , Thermodynamics
17.
J Med Chem ; 61(10): 4528-4560, 2018 05 24.
Article in English | MEDLINE | ID: mdl-29664627

ABSTRACT

Transglutaminase 2 (TGase 2)-catalyzed transamidation represents an important post-translational mechanism for protein modification with implications in physiological and pathophysiological conditions, including fibrotic and neoplastic processes. Consequently, this enzyme is considered a promising target for the diagnosis of and therapy for these diseases. In this study, we report on the synthesis and kinetic characterization of Nε-acryloyllysine piperazides as irreversible inhibitors of TGase 2. Systematic structural modifications on 54 new compounds were performed with a major focus on fluorine-bearing substituents due to the potential of such compounds to serve as radiotracer candidates for positron emission tomography. The determined inhibitory activities ranged from 100 to 10 000 M-1 s-1, which resulted in comprehensive structure-activity relationships. Structure-activity correlations using various substituent parameters accompanied by covalent docking studies provide an advanced understanding of the molecular recognition for this inhibitor class within the active site of TGase 2. Selectivity profiling of selected compounds for other transglutaminases demonstrated an excellent selectivity toward transglutaminase 2. Furthermore, an initial pharmacokinetic profiling of selected inhibitors was performed, including the assessment of potential membrane permeability and liver microsomal stability.


Subject(s)
Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/pharmacokinetics , GTP-Binding Proteins/antagonists & inhibitors , Microsomes, Liver/enzymology , Pyridazines/chemistry , Transglutaminases/antagonists & inhibitors , Animals , Catalysis , Catalytic Domain , Humans , Kinetics , Lysine/analogs & derivatives , Lysine/pharmacokinetics , Lysine/pharmacology , Mice , Microsomes, Liver/drug effects , Models, Molecular , Molecular Structure , Protein Conformation , Protein Glutamine gamma Glutamyltransferase 2 , Structure-Activity Relationship , Tissue Distribution
18.
Biopolymers ; 109(10): e23103, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29377072

ABSTRACT

The chemokine interleukin-8 (IL-8, CXCL8) plays an important role in inflammatory processes and consecutive wound healing. It recruits primarily neutrophils to infection sites and stimulates their degranulation and phagocytosis in effector cells. IL-8 binds glycosaminoglycans (GAGs), a class of complex linear anionic polysaccharides often organized into diversely sulfated micro-domains, that enriches the protein concentration locally and so facilitate the formation of stable concentration gradients. In this study, we applied experimental and computational techniques to investigate the binding of wild type and truncated IL-8 variants to natural and chemically modified GAGs to gain further insight into the IL-8/GAG interaction. Circular dichroism spectroscopy of IL-8 variants did not reveal major structural changes upon GAG binding. Heparin affinity chromatography clearly demonstrates that gradual truncation of the C-terminal helix leads to decreasing affinities. Similarly, surface plasmon resonance indicates participation of both IL-8 termini in GAG binding, which strength is dependent on GAG sulfation degree. Molecular modeling suggests that C-terminal truncation of IL-8 weakens the interaction with GAGs by an alteration of IL-8 GAG binding site. Our study provides more detailed understanding of the IL-8/GAG interaction and contributes to the data of potential use for the development of biomedical implications in tissue regeneration.


Subject(s)
Glycosaminoglycans/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism , Mutation/genetics , Amino Acid Sequence , Animals , COS Cells , Chlorocebus aethiops , Heparin/chemistry , Interleukin-8/chemistry , Protein Binding , Receptors, Interleukin-8A , Regeneration , Thermodynamics
19.
Sci Rep ; 7(1): 1210, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28446792

ABSTRACT

Glycosaminoglycans are known to bind biological mediators thereby modulating their biological activity. Sulfated hyaluronans (sHA) were reported to strongly interact with transforming growth factor (TGF)-ß1 leading to impaired bioactivity in fibroblasts. The underlying mechanism is not fully elucidated yet. Examining the interaction of all components of the TGF-ß1:receptor complex with sHA by surface plasmon resonance, we could show that highly sulfated HA (sHA3) blocks binding of TGF-ß1 to its TGF-ß receptor-I (TßR-I) and -II (TßR-II). However, sequential addition of sHA3 to the TßR-II/TGF-ß1 complex led to a significantly stronger recruitment of TßR-I compared to a complex lacking sHA3, indicating that the order of binding events is very important. Molecular modeling suggested a possible molecular mechanism in which sHA3 could potentially favor the association of TßR-I when added sequentially. For the first time bioactivity of TGF-ß1 in conjunction with sHA was investigated at the receptor level. TßR-I and, furthermore, Smad2 phosphorylation were decreased in the presence of sHA3 indicating the formation of an inactive signaling complex. The results contribute to an improved understanding of the interference of sHA3 with TGF-ß1:receptor complex formation and will help to further improve the design of functional biomaterials that interfere with TGF-ß1-driven skin fibrosis.


Subject(s)
Adjuvants, Immunologic/metabolism , Hyaluronic Acid/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Signal Transduction/drug effects , Transforming Growth Factor beta1/metabolism , Molecular Dynamics Simulation , Protein Binding , Surface Plasmon Resonance
20.
ACS Appl Mater Interfaces ; 9(11): 9539-9550, 2017 Mar 22.
Article in English | MEDLINE | ID: mdl-28248081

ABSTRACT

Several pathologic conditions such as rheumatoid arthritis, ocular neovascularization, cancer, or atherosclerosis are often associated with abnormal angiogenesis, which requires innovative biomaterial-based treatment options to control the activity of angiogenic factors. Here, we studied how sulfated hyaluronan (sHA) and oversulfated chondroitin sulfate derivatives as potential components of functional biomaterials modulate vascular endothelial growth factor-A (VEGF-A) signaling and endothelial cell activity in vitro. Tissue inhibitor of metalloproteinase-3 (TIMP-3), an effective angiogenesis inhibitor, exerts its activity by competing with VEGF-A for binding to VEGF receptor-2 (VEGFR-2). However, even though TIMP-3 and VEGF-A are known to interact with glycosaminoglycans (GAGs), the potential role and mechanism by which GAGs alter the VEGF-A/TIMP-3 regulated VEGFR-2 signaling remains unclear. Combining surface plasmon resonance, immunobiochemical analysis, and molecular modeling, we demonstrate the simultaneous binding of VEGF-A and TIMP-3 to sHA-coated surfaces and identified a novel mechanism by which sulfated GAG derivatives control angiogenesis: GAG derivatives block the binding of VEGF-A and TIMP-3 to VEGFR-2 thereby reducing their biological activity in a defined, sulfation-dependent manner. This effect was stronger for sulfated GAG derivatives than for native GAGs. The simultaneous formation of TIMP-3/sHA complexes partially rescues the sHA inhibited VEGF-A/VEGFR-2 signaling and endothelial cell activation. These results provide novel insights into the regulation of angiogenic factors by GAG derivatives and highlight the potential of sHA derivatives for the treatment of diseases associated with increased VEGF-A and VEGFR-2 levels.


Subject(s)
Hyaluronic Acid/chemistry , Angiogenesis Inducing Agents , Endothelial Cells , Neovascularization, Pathologic , Tissue Inhibitor of Metalloproteinase-3 , Vascular Endothelial Growth Factor A
SELECTION OF CITATIONS
SEARCH DETAIL
...