Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(13): 14887-14898, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38585113

ABSTRACT

Polylactic acid (PLA) and poly(ethylene terephthalate glycol) (PETG) are popular thermoplastics used in additive manufacturing applications. The mechanical properties of PLA and PETG can be significantly improved by introducing fillers, such as glass and iron nanoparticles (NPs), into the polymer matrix. Molecular dynamics (MD) simulations with the reactive INTERFACE force field were used to predict the mechanical responses of neat PLA/PETG and PLA-glass/iron and PETG-glass/iron nanocomposites with relatively high loadings of glass/iron NPs. We found that the iron and glass NPs significantly increased the elastic moduli of the PLA matrix, while the PETG matrix exhibited modest increases in elastic moduli. This difference in reinforcement ability may be due to the slightly greater attraction between the glass/iron NP and PLA matrix. The NASA Multiscale Analysis Tool was used to predict the mechanical response across a range of volume percent glass/iron filler by using only the neat and highly loaded MD predictions as input. This provides a faster and more efficient approach than creating multiple MD models per volume percent per polymer/filler combination. To validate the micromechanics predictions, experimental samples incorporating hollow glass microspheres (MS) and carbonyl iron particles (CIP) into PLA/PETG were developed and tested for elastic modulus. The CIP produced a larger reinforcement in elastic modulus than the MS, with similar increases in elastic modulus between PLA/CIP and PETG/CIP at 7.77 vol % CIP. The micromechanics-based mechanical predictions compare excellently with the experimental values, validating the integrated micromechanical/MD simulation-based approach.

2.
ACS Appl Eng Mater ; 1(11): 3167-3177, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38037665

ABSTRACT

Polyether ether ketone (PEEK) is a semicrystalline thermoplastic that is used in high-performance composites for a wide range of applications. Because the crystalline phase has a higher mass density than that of the amorphous phase, the evolution of the crystalline phase during high-temperature annealing processing steps results in the formation of residual stresses and laminate deformations, which can adversely affect the composite laminate performance. Multiscale process modeling, utilizing molecular dynamics, micromechanics, and phenomenological PEEK crystal kinetic laws, is used to predict the evolution of volumetric shrinkage, elastic properties, and thermal properties, as a function of crystalline phase evolution, and thus annealing time, in the 306-328 °C temperature range. The results indicate that lower annealing temperatures in this range result in a faster evolution of thermomechanical properties and shrinkage toward the pure crystalline values. Therefore, from the perspective of composite processing, it may be more advantageous to choose the higher annealing rates in this range to slow the volumetric shrinkage and allow PEEK stress relaxation mechanisms more time to relax internal residual stresses in PEEK composite laminates and structures.

3.
Langmuir ; 38(44): 13414-13428, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36279412

ABSTRACT

The urease enzyme is commonly used in microbially induced carbonate precipitation (MICP) and enzyme-induced carbonate precipitation (EICP) to heal and strengthen soil. Improving our understanding of the adsorption of the urease enzyme with various soil surfaces can lead to advancements in the MICP and EICP engineering methods as well as other areas of soil science. In this work, we use density functional theory (DFT) to investigate the urease enzyme's binding ability with four common arid soil components: quartz, corundum, albite, and hematite. As the urease enzyme cannot directly be simulated with DFT due to its size, the amino acids comprising at least 5% of the urease enzyme were simulated instead. An adsorption model incorporating the Gibbs free energy was used to determine the existence of amino acid-mineral binding modes. It was found that the nine simulated amino acids bind preferentially to the different soil components. Alanine favors corundum, glycine and threonine favor hematite, and aspartic acid favors albite. It was found that, under the standard environmental conditions considered here, amino acid binding to quartz is unfavorable. In the polymeric form where the side chains would dominate the binding interactions, hematite favors aspartic acid through its R-OH group and corundum favors glutamic acid through its R-Ket group. Overall, our model predicts that the urease enzyme produced by Sporosarcina pasteurii can bind to various oxides found in arid soil through its alanine, glycine, aspartic/glutamic acid, or threonine residues.


Subject(s)
Soil , Urease , Urease/metabolism , Adsorption , Amino Acids , Quartz , Aspartic Acid , Calcium Carbonate/chemistry , Carbonates , Glycine , Alanine , Aluminum Oxide , Threonine , Glutamates
4.
Nanomaterials (Basel) ; 11(11)2021 Oct 31.
Article in English | MEDLINE | ID: mdl-34835683

ABSTRACT

The mechanical properties of aerospace carbon fiber/graphene nanoplatelet/epoxy hybrid composites reinforced with pristine graphene nanoplatelets (GNP), highly concentrated graphene oxide (GO), and Functionalized Graphene Oxide (FGO) are investigated in this study. By utilizing molecular dynamics data from the literature, the bulk-level mechanical properties of hybrid composites are predicted using micromechanics techniques for different graphene nanoplatelet types, nanoplatelet volume fractions, nanoplatelet aspect ratios, carbon fiber volume fractions, and laminate lay-ups (unidirectional, cross-ply, and angle-ply). For the unidirectional hybrid composites, the results indicate that the shear and transverse properties are significantly affected by the nanoplatelet type, loading and aspect ratio. For the cross-ply and angle ply hybrid laminates, the effect of the nanoplate's parameters on the mechanical properties is minimal when using volume fractions and aspect ratios that are typically used experimentally. The results of this study can be used in the design of hybrid composites to tailor specific laminate properties by adjusting nanoplatelet parameters.

5.
Langmuir ; 37(39): 11526-11534, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34550699

ABSTRACT

The next generation of ultrahigh-strength composites for structural components of vehicles for manned missions to deep space will likely incorporate flattened carbon nanotubes (flCNTs). With a wide range of high-performance polymers to choose from as the matrix component, efficient and accurate computational modeling can be used to efficiently downselect compatible resins and provide critical physical insight into the flCNT/polymer interface. In this study, molecular dynamics simulation is used to predict the interaction energy, frictional sliding resistance, and mechanical binding of flCNT/polymer interfaces for epoxy, bismaleimide (BMI), and benzoxazine high-performance resins. The results indicate that BMI has a stronger interfacial interaction and transverse tension binding with flCNT interfaces, while benzoxazine demonstrates the strongest levels of interfacial friction resistance.

SELECTION OF CITATIONS
SEARCH DETAIL
...