Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Stimul ; 13(4): 1024-1030, 2020.
Article in English | MEDLINE | ID: mdl-32388045

ABSTRACT

INTRODUCTION: Vagus nerve stimulation (VNS) is an FDA-approved neuromodulatory treatment used in the clinic today for epilepsy, depression, and cluster headaches. Moreover, evidence in the literature has led to a growing list of possible clinical indications, with several small clinical trials applying VNS to treat conditions ranging from neurodegenerative diseases to arthritis, anxiety disorders, and obesity. Despite the growing list of therapeutic applications, the fundamental mechanisms by which VNS achieves its beneficial effects are poorly understood. In parallel, the glymphatic and meningeal lymphatic systems have recently been described as methods by which the brain maintains a healthy homeostasis and removes waste without a traditionally defined lymphatic system. In particular, the glymphatic system relates to the interchange of cerebrospinal fluid (CSF) and interstitial fluid (ISF) whose net effect is to wash through the brain parenchyma removing metabolic waste products and misfolded proteins. OBJECTIVE/HYPOTHESIS: As VNS has well-documented effects on many of the pathways recently linked to the clearance systems of the brain, we hypothesized that VNS could increase CSF penetrance in the brain. METHODS: We injected a low molecular weight lysine-fixable fluorescent tracer (TxRed-3kD) into the CSF system of mice with a cervical vagus nerve cuff implant and measured the amount of CSF penetrance following an application of a clinically-derived VNS paradigm (30 Hz, 10% duty cycle). RESULTS: We found that the clinical VNS group showed a significant increase in CSF tracer penetrance as compared to the naïve control and sham groups. CONCLUSION: (s): This study demonstrates that VNS therapeutic strategies already being applied in the clinic today may induce intended effects and/or unwanted side effects by altering CSF/ISF exchange in the brain. This may have broad ranging implications in the treatment of various CNS pathologies.


Subject(s)
Brain/metabolism , Cerebrospinal Fluid/metabolism , Vagus Nerve Stimulation/methods , Animals , Brain/physiology , Cerebrospinal Fluid/physiology , Fluorescent Dyes/pharmacokinetics , Male , Mice , Vagus Nerve/physiology , Xanthenes/cerebrospinal fluid
2.
J Neural Eng ; 17(5): 056049, 2020 10 31.
Article in English | MEDLINE | ID: mdl-32299067

ABSTRACT

OBJECTIVE: The main objective of this research was to study the coupling between neural circuits and the vascular network in the cortex of small rodents from system engineering point of view and generate a mathematical model for the dynamics of neurovascular coupling. The model was adopted to implement closed-loop blood flow control algorithms. APPROACH: We used a combination of advanced technologies including optogenetics, electrocorticography, and optical coherence tomography to stimulate selected populations of neurons and simultaneously record induced electrocorticography and hemodynamic signals. We adopted system identification methods to analyze the acquired data and investigate the relation between optogenetic neural activation and consequential electrophysiology and blood flow responses. MAIN RESULTS: We showed that the developed model, once trained by the acquired data, could successfully regenerate subtle spatio-temporal features of evoked electrocorticography and cerebral blood flow responses following an onset of optogenetic stimulation. SIGNIFICANCE: The long term goal of this research is to open a new line for computational analysis of neurovascular coupling particularly in pathologies where the normal process of blood flow regulation in the central nervous system is disrupted including Alzheimer's disease.


Subject(s)
Electrocorticography , Neurovascular Coupling , Cerebral Cortex , Cerebrovascular Circulation , Optogenetics
3.
J Surg Res ; 251: 311-320, 2020 07.
Article in English | MEDLINE | ID: mdl-32200322

ABSTRACT

BACKGROUND: Outcome assessments that evaluate post-transection nerve repair do not often correlate with one another. The aims of this study were twofold: to compare four nerve repair techniques with each other and incorporate both negative and positive control groups and to identify possible correlations between outcome assessments. MATERIALS AND METHODS: Sciatic nerve transection and repair was performed in Lewis rats using one of the following techniques: interrupted epineural, running epineural, grouped fascicular, epineural with absorbable type I collagen wrap, and high tension for incorporation of a negative control. A sham surgery group was also included as a positive control group. Outcomes were compared using assessments of functional recovery (behavior and electrophysiology) and nerve regrowth (imaging and histomorphometry). Three-dimensional printed custom electrode stabilization and imaging devices were designed and fabricated to provide standardization in assessment between subjects. RESULTS: Nerve repair was performed in 48 male Lewis rats. In all animals, functional testing was performed at week 13. The sham group (n = 7) performed the best on both behavioral assays (P < 0.001) and electrophysiology assessments (P < 0.001). The negative control group (high tension) performed poorest on multiple assessments, and there were no significant differences observed for any of the four repair types. Positive correlations were observed between behavioral and histomorphometric tests. CONCLUSIONS: There was no difference in outcome between the four types of nerve repair. High-tension nerve repair represents an ideal negative control. Not all assessment methods correlate equally, and consistent use of complimentary outcome assessments could allow for improved comparison between studies.


Subject(s)
Nerve Regeneration , Neurosurgical Procedures/methods , Sciatic Nerve/injuries , Animals , Male , Neurosurgical Procedures/rehabilitation , Rats, Inbred Lew , Rotarod Performance Test , Sciatic Nerve/physiology
4.
J Neurosci Methods ; 336: 108602, 2020 04 15.
Article in English | MEDLINE | ID: mdl-31981569

ABSTRACT

BACKGROUND: A number of peripheral nerve interfaces for nerve stimulation and recording exist for the purpose of controlling neural prostheses, each with a set of advantages and disadvantages. The ultimate goal of neural prostheses is a seamless bi-directional communication between the peripheral nervous system and the prosthesis. Here, we developed an interfacing electrode array, the "cuff and sieve electrodes" (CASE), integrating microfabricated cuff and sieve electrodes to a single unit, to decrease the weaknesses faced by these electrode designs in isolation. This paper presents the design and fabrication of CASE with ex vivo and in vivo testing towards chronic application. METHODS: Electroplating on electrode sites was performed to improve electrical properties of CASE. The surface morphology and chemical compound were characterized using scanning electron microscopy and energy-dispersive spectroscopy, respectively. Electrochemical impedance spectroscopy and cyclic voltammetry were performed to evaluate the electrical properties of CASE and determine viability for in vivo applications. Terminal CASE implantations were performed in a rat sciatic transection model to test the ease of implantation and capacity to write sensory information into the biological system. RESULTS: The modified platinum film resulted in reducing impedance magnitude (9.18 kΩ and 2.27 kΩ) and increasing phase angle (over 70°). CASE stimulation of the sciatic nerve at different amplitudes elicited significantly different cortical responses (p < 0.005) as demonstrated by somatosensory evoked potentials, recorded via micro-electrocorticography. CONCLUSIONS: The ability to elicit cortical responses from sciatic nerve stimulation demonstrates the proof of concept for both the implantation and chronic monitoring of CASE interfaces for innovative prosthetic control.


Subject(s)
Artificial Limbs , Neural Prostheses , Animals , Electric Impedance , Electric Stimulation , Electrodes , Electrodes, Implanted , Peripheral Nerves , Rats
5.
Biosens Bioelectron ; 142: 111493, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31319324

ABSTRACT

The trigeminal nerve (cranial nerve V), along with other cranial nerves, has in recent years become a popular target for bioelectric medicine due to its direct access to neuromodulatory centers. Trigeminal nerve stimulation is currently being evaluated as an adjunctive treatment for various neurodegenerative and neuropsychiatric diseases despite the mechanism of action being in question. In this work, we describe the development and validation of a novel neural interface for the infraorbital branch of the trigeminal nerve utilizing a thin film (TF) nerve cuff containing multiple electrode sites allowing for more selective stimulation of the nerve. We characterized the properties of the device using electrochemical impedance spectroscopy, cyclic voltammetry, voltage excursions, and in vivo testing. Electrochemical measurements demonstrate that the platinum-based electrodes possess a capacitive charge carrying mechanism suitable for stimulation of biological tissue with a safe charge injection limit of 73.13 µC/cm2. In vivo stimulation experiments show that the TF cuff can reliably stimulate nerve targets eliciting cortical responses similar to a silicone cuff electrode. Furthermore, selecting different pairs of stimulation electrodes on the TF cuff modulated the magnitude and/or spatial pattern of cortical responses suggesting that the device may be able to selectively stimulate different parts of the nerve. These results suggest that the TF cuff is a viable neural interface for stimulation of the infraorbital branch of the trigeminal nerve that enables future research examining the therapeutic mechanisms of trigeminal nerve stimulation.


Subject(s)
Electric Stimulation Therapy/instrumentation , Electric Stimulation/instrumentation , Trigeminal Nerve/physiology , Animals , Electrodes, Implanted , Equipment Design , Evoked Potentials, Somatosensory , Female , Mice , Mice, Inbred C57BL , Neurodegenerative Diseases/therapy
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 4756-4759, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30441412

ABSTRACT

In recent years, the trigeminal nerve (CN V) has become a popular target for neuromodulation therapies to treat of a variety of diseases due to its access to neuromodulatory centers. Despite promising preclinical and clinical data, the mechanism of action of trigeminal nerve stimulation (TNS) remains in question. In this work, we describe the development and evaluation of a neural interface targeting the mouse trigeminal nerve with the goal of enabling future mechanistic research on TNS. We performed experiments designed to evaluate the ability of a peripheral nerve interface (i.e. cuff electrode) to stimulate the infraorbital branch of the trigeminal nerve. We found that both artificial and naturalistic stimulation of the trigeminal nerve elicited robust cortical responses in the somatosensory cortex that scaled with increases in stimulus amplitude. These results suggest that an infraorbital nerve interface is a suitable candidate for examining the neural mechanisms of TNS in the mouse.


Subject(s)
Somatosensory Cortex , Trigeminal Nerve , Animals , Electric Stimulation , Mice , Peripheral Nerves , Prefrontal Cortex
7.
J Neural Eng ; 15(5): 056033, 2018 10.
Article in English | MEDLINE | ID: mdl-30080158

ABSTRACT

OBJECTIVE: We introduce an engineering approach to study spatiotemporal correlations between vasodynamics and the nearby neural activity in open-loop and closed-loop paradigms. APPROACH: We integrated optogenetic technology with optical coherence tomography to apply spatiotemporal patterns of optical neurostimulation to the cortex of transgenic optogenetic mice and measure blood flow-rate, velocity, and diameter changes of selected middle cerebral artery branches. MAIN RESULTS: The spatiotemporal characteristics of blood flow-rate, velocity, and vessel diameter responses to localized neurostimulation light pulses were measured. It was observed that the location of stimulation relative to the surrounding vascular topology had notable effects on temporal patterns of vasodynamic responses. This effect was studied by creating velocity, flow-rate, and diameter sensitivity maps for selected arteries. Generally, neural stimulation in the vicinity of downstream capillaries of an artery evoked a fast transient increase in the blood flow-rate, velocity, and vessel diameter which was followed by a long-lasting secondary peak-response. The temporal span of the flow-rate response was quasi-linearly proportional to the length of stimulation. When neural stimulation was delivered to the area in the vicinity of one daughter branch of an artery, in other branches, we observed some drop in blood velocity and/or flow-rate and concurring increase of the vessel diameter. To examine the reliability of the coupling between neural activity and regional blood flow, a closed-loop feedback controller was implemented which is capable of maintaining blood flow-rate at any desired level for relatively longer periods by continuously adjusting the width of stimulation pulses. SIGNIFICANCE: The proposed approach opens new lines of research with potential applications in understanding the role of different cell types in the cerebrovascular regulatory mechanisms and the study of the adaptive process of angiogenesis in the cerebral cortex. The observation of incoherent responses of vessel diameter, blood flow-rate, and velocity suggests that such detailed information is necessary to obtain an accurate interpretation of the data acquired via hemodynamic based functional imaging techniques.


Subject(s)
Cerebral Cortex/blood supply , Neurovascular Coupling , Optogenetics/methods , Algorithms , Animals , Blood Flow Velocity/physiology , Capillaries/physiology , Cerebrovascular Circulation/genetics , Cerebrovascular Circulation/physiology , Mice , Mice, Transgenic , Middle Cerebral Artery/physiology , Photic Stimulation , Tomography, Optical Coherence
8.
Plast Reconstr Surg Glob Open ; 5(12): e1586, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29632766

ABSTRACT

BACKGROUND: Clinical outcomes after nerve injury and repair remain suboptimal. Patients may be plagued by poor functional recovery and painful neuroma at the repair site, characterized by disorganized collagen and sprouting axons. Collagen deposition during wound healing can be intrinsically imaged using second harmonic generation (SHG) microscopy. The purpose of this study was to develop a protocol for SHG imaging of nerves and to assess whether collagen alignment can be quantified after nerve repair. METHODS: Sciatic nerve transection and epineural repair was performed in male rats. The contralateral nerves were used as intra-animal controls. Ten-millimeter nerve segments were harvested and fixed onto slides. SHG images were collected using a 20× objective on a multiphoton microscope. Collagen fiber alignment was calculated using CurveAlign software. Alignment was calculated on a scale from 0 to 1, where 1 represents perfect alignment. Statistical analysis was performed using a linear mixed-effects model. RESULTS: Eight male rats underwent right sciatic nerve repair using 9-0 Nylon suture. There were gross variations in collagen fiber organization in the repaired nerves compared with the controls. Quantitatively, collagen fibers were more aligned in the control nerves (mean alignment 0.754, SE 0.055) than in the repairs (mean alignment 0.413, SE 0.047; P < 0.001). CONCLUSIONS: SHG microscopy can be used to quantitate collagen after nerve repair via fiber alignment. Given that the development of neuroma likely reflects aberrant wound healing, ex vivo and/or in vivo SHG imaging may be useful for further investigation of the variables predisposing to neuroma.

SELECTION OF CITATIONS
SEARCH DETAIL
...