Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Stimul ; 13(4): 1024-1030, 2020.
Article in English | MEDLINE | ID: mdl-32388045

ABSTRACT

INTRODUCTION: Vagus nerve stimulation (VNS) is an FDA-approved neuromodulatory treatment used in the clinic today for epilepsy, depression, and cluster headaches. Moreover, evidence in the literature has led to a growing list of possible clinical indications, with several small clinical trials applying VNS to treat conditions ranging from neurodegenerative diseases to arthritis, anxiety disorders, and obesity. Despite the growing list of therapeutic applications, the fundamental mechanisms by which VNS achieves its beneficial effects are poorly understood. In parallel, the glymphatic and meningeal lymphatic systems have recently been described as methods by which the brain maintains a healthy homeostasis and removes waste without a traditionally defined lymphatic system. In particular, the glymphatic system relates to the interchange of cerebrospinal fluid (CSF) and interstitial fluid (ISF) whose net effect is to wash through the brain parenchyma removing metabolic waste products and misfolded proteins. OBJECTIVE/HYPOTHESIS: As VNS has well-documented effects on many of the pathways recently linked to the clearance systems of the brain, we hypothesized that VNS could increase CSF penetrance in the brain. METHODS: We injected a low molecular weight lysine-fixable fluorescent tracer (TxRed-3kD) into the CSF system of mice with a cervical vagus nerve cuff implant and measured the amount of CSF penetrance following an application of a clinically-derived VNS paradigm (30 Hz, 10% duty cycle). RESULTS: We found that the clinical VNS group showed a significant increase in CSF tracer penetrance as compared to the naïve control and sham groups. CONCLUSION: (s): This study demonstrates that VNS therapeutic strategies already being applied in the clinic today may induce intended effects and/or unwanted side effects by altering CSF/ISF exchange in the brain. This may have broad ranging implications in the treatment of various CNS pathologies.


Subject(s)
Brain/metabolism , Cerebrospinal Fluid/metabolism , Vagus Nerve Stimulation/methods , Animals , Brain/physiology , Cerebrospinal Fluid/physiology , Fluorescent Dyes/pharmacokinetics , Male , Mice , Vagus Nerve/physiology , Xanthenes/cerebrospinal fluid
2.
J Surg Res ; 251: 311-320, 2020 07.
Article in English | MEDLINE | ID: mdl-32200322

ABSTRACT

BACKGROUND: Outcome assessments that evaluate post-transection nerve repair do not often correlate with one another. The aims of this study were twofold: to compare four nerve repair techniques with each other and incorporate both negative and positive control groups and to identify possible correlations between outcome assessments. MATERIALS AND METHODS: Sciatic nerve transection and repair was performed in Lewis rats using one of the following techniques: interrupted epineural, running epineural, grouped fascicular, epineural with absorbable type I collagen wrap, and high tension for incorporation of a negative control. A sham surgery group was also included as a positive control group. Outcomes were compared using assessments of functional recovery (behavior and electrophysiology) and nerve regrowth (imaging and histomorphometry). Three-dimensional printed custom electrode stabilization and imaging devices were designed and fabricated to provide standardization in assessment between subjects. RESULTS: Nerve repair was performed in 48 male Lewis rats. In all animals, functional testing was performed at week 13. The sham group (n = 7) performed the best on both behavioral assays (P < 0.001) and electrophysiology assessments (P < 0.001). The negative control group (high tension) performed poorest on multiple assessments, and there were no significant differences observed for any of the four repair types. Positive correlations were observed between behavioral and histomorphometric tests. CONCLUSIONS: There was no difference in outcome between the four types of nerve repair. High-tension nerve repair represents an ideal negative control. Not all assessment methods correlate equally, and consistent use of complimentary outcome assessments could allow for improved comparison between studies.


Subject(s)
Nerve Regeneration , Neurosurgical Procedures/methods , Sciatic Nerve/injuries , Animals , Male , Neurosurgical Procedures/rehabilitation , Rats, Inbred Lew , Rotarod Performance Test , Sciatic Nerve/physiology
3.
J Neurosci Methods ; 336: 108602, 2020 04 15.
Article in English | MEDLINE | ID: mdl-31981569

ABSTRACT

BACKGROUND: A number of peripheral nerve interfaces for nerve stimulation and recording exist for the purpose of controlling neural prostheses, each with a set of advantages and disadvantages. The ultimate goal of neural prostheses is a seamless bi-directional communication between the peripheral nervous system and the prosthesis. Here, we developed an interfacing electrode array, the "cuff and sieve electrodes" (CASE), integrating microfabricated cuff and sieve electrodes to a single unit, to decrease the weaknesses faced by these electrode designs in isolation. This paper presents the design and fabrication of CASE with ex vivo and in vivo testing towards chronic application. METHODS: Electroplating on electrode sites was performed to improve electrical properties of CASE. The surface morphology and chemical compound were characterized using scanning electron microscopy and energy-dispersive spectroscopy, respectively. Electrochemical impedance spectroscopy and cyclic voltammetry were performed to evaluate the electrical properties of CASE and determine viability for in vivo applications. Terminal CASE implantations were performed in a rat sciatic transection model to test the ease of implantation and capacity to write sensory information into the biological system. RESULTS: The modified platinum film resulted in reducing impedance magnitude (9.18 kΩ and 2.27 kΩ) and increasing phase angle (over 70°). CASE stimulation of the sciatic nerve at different amplitudes elicited significantly different cortical responses (p < 0.005) as demonstrated by somatosensory evoked potentials, recorded via micro-electrocorticography. CONCLUSIONS: The ability to elicit cortical responses from sciatic nerve stimulation demonstrates the proof of concept for both the implantation and chronic monitoring of CASE interfaces for innovative prosthetic control.


Subject(s)
Artificial Limbs , Neural Prostheses , Animals , Electric Impedance , Electric Stimulation , Electrodes , Electrodes, Implanted , Peripheral Nerves , Rats
4.
Plast Reconstr Surg Glob Open ; 5(12): e1586, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29632766

ABSTRACT

BACKGROUND: Clinical outcomes after nerve injury and repair remain suboptimal. Patients may be plagued by poor functional recovery and painful neuroma at the repair site, characterized by disorganized collagen and sprouting axons. Collagen deposition during wound healing can be intrinsically imaged using second harmonic generation (SHG) microscopy. The purpose of this study was to develop a protocol for SHG imaging of nerves and to assess whether collagen alignment can be quantified after nerve repair. METHODS: Sciatic nerve transection and epineural repair was performed in male rats. The contralateral nerves were used as intra-animal controls. Ten-millimeter nerve segments were harvested and fixed onto slides. SHG images were collected using a 20× objective on a multiphoton microscope. Collagen fiber alignment was calculated using CurveAlign software. Alignment was calculated on a scale from 0 to 1, where 1 represents perfect alignment. Statistical analysis was performed using a linear mixed-effects model. RESULTS: Eight male rats underwent right sciatic nerve repair using 9-0 Nylon suture. There were gross variations in collagen fiber organization in the repaired nerves compared with the controls. Quantitatively, collagen fibers were more aligned in the control nerves (mean alignment 0.754, SE 0.055) than in the repairs (mean alignment 0.413, SE 0.047; P < 0.001). CONCLUSIONS: SHG microscopy can be used to quantitate collagen after nerve repair via fiber alignment. Given that the development of neuroma likely reflects aberrant wound healing, ex vivo and/or in vivo SHG imaging may be useful for further investigation of the variables predisposing to neuroma.

SELECTION OF CITATIONS
SEARCH DETAIL
...