Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 11(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38275575

ABSTRACT

The kidney proximal tubule (PT) mediates renal drug elimination in vivo and is a major site of drug-induced toxicity. To reliably assess drug efficacy, it is crucial to construct a model in which PT functions are replicated. Current animal studies have proven poorly predictive of human outcome. To address this, we developed a physiologically relevant micro-physiological system (MPS) model of the human PT, the aProximate MPS Flow platform (Patent No: G001336.GB). In this model, primary human PT cells (hPTCs) are subjected to fluidic media flow and a shear stress of 0.01-0.2 Pa. We observe that these cells replicate the polarity of hPTCs and exhibit a higher expression of all the key transporters of SLC22A6 (OAT1), SLC22A8 (OAT3), SLC22A2 (OCT2), SLC47A1 (MATE1), SLC22A12 (URAT1), SLC2A9 (GLUT9), ABCB1 (MDR1), ABCC2 (MRP2), LRP2 (megalin), CUBN (cubilin), compared with cells grown under static conditions. Immunofluorescence microscopy confirmed an increase in OAT1, OAT3, and cilia protein expression. Increased sensitivity to nephrotoxic protein cisplatin was observed; creatinine and FITC-albumin uptake was significantly increased under fluidic shear stress conditions. Taken together, these data suggest that growing human PT cells under media flow significantly improves the phenotype and function of hPTC monolayers and has benefits to the utility and near-physiology of the model.

2.
Sci Rep ; 12(1): 17361, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36253423

ABSTRACT

Comparisons are made between six different approved face masks concerning their particle transmissibility allied to mechanical properties. The latter involves material testing and stretch or strain behaviour under load. SEM and X-ray elemental analyses showed contrasting structures between random and ordered fibre orientations. These constitute the mask designs where transmissibility is to be minimised. Airflow velocity measurement enabled filtration to be measured between the different mask designs, from two to six layers of different fabrics in combination. SEM provided the fibre diameter and pore size of each mask layer, up to a maximum of six. Stretching each complete mask showed its elasticity and recovery behaviour on an energy basis. The energy conversion involved in mask straining involves areas enclosed within steady and cyclic load-extension plots. Thus, the work done in extending a mask and the energy recovered from its release identified a hysteresis associated with an irrecoverable permanent stretch to the mask fabric. Failure of individual layers, which occurred successively in extended stretch tests, appeared as a drop in a load-extension response. That change is associated with permanent damage to each mask and friction contact within the rearrangement of loose fibre weaves. Masks with the greatest number of layers reduced particle transmissibility. However, woven or ordered mask fabrics in two layers with different orientations provided comparable performance. Simulation of each mechanical response, velocity streamlining and fibre distribution within the mask layers are also presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...