Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Biomech (Bristol, Avon) ; 21(10): 1042-50, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16942820

ABSTRACT

BACKGROUND: Performance variability measures provide a partial picture of force control ability. Nonlinear analyses can reveal important information related to the randomness and complexity of the data, providing a more complete picture of the physiological process. METHODS: We investigated the effects of visual feedback on the structure and performance of the force output from isometric force control tasks. Twelve young volunteers completed isometric force control tasks using two types of visual feedback: discrete bandwidth (+/-4% maximal voluntary contraction) and continuous line matching. We determined force signal variability (standard deviation), self-similarity (fractal dimension), and complexity (approximate entropy). Analyses of variance (feedback x muscle group x force level) were conducted and P values less than 0.05 were considered significant. FINDINGS: The force signal in discrete bandwidth feedback, compared to continuous line matching, had significantly a higher standard deviation (P=.000): 2.18 Nm (SD 1.98) vs. 0.99 Nm (SD 0.91); lower fractal dimension (P=.000): 1.07 (SD 0.04) vs. 1.16 (SD 0.04); and lower approximate entropy (P=.000): 0.12 (SD 0.07) vs. 0.26 (SD 0.09). INTERPRETATION: The greater self-similarity (lower fractal dimension) and greater regularity (lower approximate entropy) of the discrete bandwidth, compared to the continuous line matching, may indicate a process that required more kinesthetic (intrinsic) feedback to modulate force. Clinicians may choose to employ visual feedback paradigms that target the use of intrinsic feedback during rehabilitation. Discrete bandwidth feedback may be useful for delineating impairments in motor skill and measuring outcomes of intervention programs.


Subject(s)
Elbow Joint/physiology , Feedback/physiology , Isometric Contraction/physiology , Knee Joint/physiology , Muscle, Skeletal/physiology , Psychomotor Performance/physiology , Vision, Ocular/physiology , Adult , Humans , Male , Signal Processing, Computer-Assisted , Stress, Mechanical
2.
Appl Ergon ; 37(5): 607-14, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16356467

ABSTRACT

The purpose of the study was to investigate the effects of load weight carried by soldiers upon postural sway. Fourteen US Army enlisted men participated. Postural sway and muscle activity were measured while participants stood on a force plate. The load weight conditions, comprised of Army clothing and load-carriage equipment were 6, 16, and 40 kg. With an increase in load weight, stabilogram-diffusion analysis revealed that random movement of postural sway decreased. Also, with an increase in load weight, center of pressure excursions increased linearly but muscle activity changed minimally. In short, increasing load weight challenged the load carriers' stability, reduced the randomness of postural sway and required the load carriers to exert greater control of the load in order to maintain balance.


Subject(s)
Motion , Postural Balance/physiology , Posture/physiology , Weight-Bearing/physiology , Adolescent , Adult , Humans , Male , Military Personnel , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...