Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 21807, 2023 12 09.
Article in English | MEDLINE | ID: mdl-38071253

ABSTRACT

Face masks play a role in reducing the spread of airborne pathogens, providing that they have a good filtration performance, are correctly fitted and maintained. Bacterial Filtration Efficiency (BFE) is a key indicator for evaluating filtration performance according to both European and US standards, requiring the use of Staphylococcus aureus loaded aerosol. However, the generation and handling of a Biohazard group 2 bacterium aerosol require a careful management of the biological risk and pose limitations to the accessibility to this method. To mitigate these drawbacks, we investigated the use of S. epidermidis ATCC 12228, a Biohazard group 1 bacterium, as surrogate in BFE test. To this end, tests with the surrogate strain were performed to tune the method. Then, three face mask models, representative for both surgical and community masks, were tested according to the standard method and then using an aerosolized suspension of S. epidermidis. BFE% values were calculated for each mask model and tested microorganisms. Results showed that BFE test can be performed using the S. epidermidis instead of S. aureus, preserving results validity and turnaround time, but reducing residual risk for laboratory operators.


Subject(s)
Masks , Staphylococcus aureus , Staphylococcus epidermidis , Filtration , Aerosols , Hazardous Substances
2.
Sci Total Environ ; 766: 144440, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33421784

ABSTRACT

Non-exhaust emissions (NEE) of particulate matter (PM) from brake, tyre, road pavement and railway wear, as well as resuspension of already deposited road dust, account for up to 90% by mass of total traffic-related PM emitted. This review aims at analysing the current knowledge on road traffic NEE regarding sources, particle generation processes, chemical and physical characterization, and mitigation strategies. The literature on this matter often presents highly variable and hardly comparable results due to the heterogeneity of NEE sources and the absence of standardized sampling and measurement protocols. As evidence, emission factors (EFs) were found to range from 1 mg km-1 veh-1 to 18.5 mg km-1 veh-1 for brake wear, and from 0.3 mg km-1 veh-1 to 7.4 mg km-1 veh-1 for tyre wear. Resuspended dust, which varies in even wider ranges (from 5.4 mg km-1 veh-1 to 330 mg km-1 veh-1 for cars), is considered the prevailing NEE source. The lack of standardized monitoring approaches resulted in the impossibility of setting international regulations to limit NEE. Therefore, up until now the abatement of NEE has only been achieved by mitigation and prevention strategies. However, the effectiveness of these measures still needs to be improved and further investigated. As an example, mitigation strategies, such as street washing or sweeping, proved effective in reducing PM levels, but only in the short term. The replacement of internal combustion engines vehicles with electric ones was instead proposed as a prevention strategy, but there are still concerns regarding the increase of NEE deriving from the extra weight of the batteries. The data reported in this review highlighted the need for future studies to broaden their research area, and to focus not only on the standardization of methods and the introduction of regulations, but also on improving already existing technologies and mitigating strategies.

SELECTION OF CITATIONS
SEARCH DETAIL
...