Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122023 Dec 20.
Article in English | MEDLINE | ID: mdl-38117039

ABSTRACT

How morphogenetic movements are robustly coordinated in space and time is a fundamental open question in biology. We study this question using the wing of Drosophila melanogaster, an epithelial tissue that undergoes large-scale tissue flows during pupal stages. Previously, we showed that pupal wing morphogenesis involves both cellular behaviors that allow relaxation of mechanical tissue stress, as well as cellular behaviors that appear to be actively patterned (Etournay et al., 2015). Here, we show that these active cellular behaviors are not guided by the core planar cell polarity (PCP) pathway, a conserved signaling system that guides tissue development in many other contexts. We find no significant phenotype on the cellular dynamics underlying pupal morphogenesis in mutants of core PCP. Furthermore, using laser ablation experiments, coupled with a rheological model to describe the dynamics of the response to laser ablation, we conclude that while core PCP mutations affect the fast timescale response to laser ablation they do not significantly affect overall tissue mechanics. In conclusion, our work shows that cellular dynamics and tissue shape changes during Drosophila pupal wing morphogenesis do not require core PCP as an orientational guiding cue.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/metabolism , Drosophila melanogaster/physiology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Pupa/genetics , Wings, Animal/physiology , Morphogenesis/genetics , Cell Polarity , Mutation
2.
Elife ; 102021 03 26.
Article in English | MEDLINE | ID: mdl-33769281

ABSTRACT

Tissue organization is often characterized by specific patterns of cell morphology. How such patterns emerge in developing tissues is a fundamental open question. Here, we investigate the emergence of tissue-scale patterns of cell shape and mechanical tissue stress in the Drosophila wing imaginal disc during larval development. Using quantitative analysis of the cellular dynamics, we reveal a pattern of radially oriented cell rearrangements that is coupled to the buildup of tangential cell elongation. Developing a laser ablation method, we map tissue stresses and extract key parameters of tissue mechanics. We present a continuum theory showing that this pattern of cell morphology and tissue stress can arise via self-organization of a mechanical feedback that couples cell polarity to active cell rearrangements. The predictions of this model are supported by knockdown of MyoVI, a component of mechanosensitive feedback. Our work reveals a mechanism for the emergence of cellular patterns in morphogenesis.


During development, carefully choreographed cell movements ensure the creation of a healthy organism. To determine their identity and place across a tissue, cells can read gradients of far-reaching signaling molecules called morphogens; in addition, physical forces can play a part in helping cells acquire the right size and shape. Indeed, cells are tightly attached to their neighbors through connections linked to internal components. Structures or proteins inside the cells can pull on these junctions to generate forces that change the physical features of a cell. However, it is poorly understood how these forces create patterns of cell size and shape across a tissue. Here, Dye, Popovic et al. combined experiments with physical models to examine how cells acquire these physical characteristics across the developing wing of fruit fly larvae. This revealed that cells pushing and pulling on one another create forces that trigger internal biochemical reorganization ­ for instance, force-generating structures become asymmetrical. In turn, the cells exert additional forces on their neighbors, setting up a positive feedback loop which results in cells adopting the right size and shape across the organ. As such, cells in the fly wing can spontaneously self-organize through the interplay of mechanical and biochemical signals, without the need for pre-existing morphogen gradients. A refined understanding of how physical forces shape cells and organs would help to grasp how defects can emerge during development. This knowledge would also allow scientists to better grow tissues and organs in the laboratory, both for theoretical research and regenerative medicine.


Subject(s)
Cell Shape , Drosophila melanogaster/physiology , Imaginal Discs/physiology , Mechanotransduction, Cellular , Wings, Animal/physiology , Animals , Body Patterning , Cell Division , Cell Polarity , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Feedback, Physiological , Female , Imaginal Discs/embryology , Male , Models, Biological , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Stress, Mechanical , Time Factors , Wings, Animal/embryology
3.
Curr Biol ; 29(4): 578-591.e5, 2019 02 18.
Article in English | MEDLINE | ID: mdl-30744966

ABSTRACT

Studying how epithelia respond to mechanical stresses is key to understanding tissue shape changes during morphogenesis. Here, we study the viscoelastic properties of the Drosophila wing epithelium during pupal morphogenesis by quantifying mechanical stress and cell shape as a function of time. We find a delay of 8 h between maximal tissue stress and maximal cell elongation, indicating a viscoelastic deformation of the tissue. We show that this viscoelastic behavior emerges from the mechanosensitivity of endocytic E-cadherin turnover. The increase in E-cadherin turnover in response to stress is mediated by mechanosensitive relocalization of the E-cadherin binding protein p120-catenin (p120) from cell junctions to cytoplasm. Mechanosensitivity of E-cadherin turnover is lost in p120 mutant wings, where E-cadherin turnover is constitutively high. In this mutant, the relationship between mechanical stress and stress-dependent cell dynamics is altered. Cells in p120 mutant deform and undergo cell rearrangements oriented along the stress axis more rapidly in response to mechanical stress. These changes imply a lower viscosity of wing epithelium. Taken together, our findings reveal that p120-dependent mechanosensitive E-cadherin turnover regulates viscoelastic behavior of epithelial tissues.


Subject(s)
Cadherins/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/physiology , Mechanotransduction, Cellular/physiology , Animals , Cadherins/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/growth & development , Elasticity , Epithelium/physiology , Male , Pupa/growth & development , Pupa/physiology , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...