Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Medchemcomm ; 8(2): 338-345, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-30108749

ABSTRACT

Previous studies within our group have yielded a class of cinnamoyl-based competitive reversible inhibitors for tissue transglutaminase (TG2), with Ki values as low as 1.0 µM (compound CP4d). However, due to the electrophilic nature of their alkene moiety, this class of inhibitors is susceptible to nucleophilic attack by glutathione, a key element in cellular metabolism and toxicity response. To address this issue, we made several modifications to the inhibitor scaffold, ultimately showing that a bis(triazole) scaffold increased resistance to nucleophilic attack, with compound 27d being the most potent (Ki = 10 µM). In the process of reducing reactivity, we also prepared a new class of inhibitors, replacing the alkene of CP4d with an alkyne, leading to a significant increase in potency for compound 22b (Ki = 420 nM).

2.
Genome ; 57(5): 303-8, 2014 May.
Article in French | MEDLINE | ID: mdl-25188289

ABSTRACT

Gene conversions are nonreciprocal sequence exchanges between genes. They are relatively common in Saccharomyces cerevisiae, but few studies have investigated the evolutionary fate of gene conversions or their functional impacts. Here, we analyze the evolution and impact of gene conversions between the two genes encoding 2-deoxyglucose-6-phosphate phosphatase in S. cerevisiae, Saccharomyces paradoxus and Saccharomyces mikatae. Our results demonstrate that the last half of these genes are subject to gene conversions among these three species. The greater similarity and the greater percentage of GC nucleotides in the converted regions, as well as the absence of long regions of adjacent common converted sites, suggest that these gene conversions are frequent and occur independently in all three species. The high frequency of these conversions probably result from the fact that they have little impact on the protein sequences encoded by these genes.


Subject(s)
Fungal Proteins/genetics , Phosphoric Monoester Hydrolases/genetics , Saccharomyces/classification , Saccharomyces/genetics , Base Composition , Base Sequence , Conserved Sequence , Evolution, Molecular , Gene Conversion , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...