Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Zebrafish ; 18(1): 66-72, 2021 02.
Article in English | MEDLINE | ID: mdl-33538653

ABSTRACT

Farlowella is the second richest genus in Loricariinae, broadly distributed in freshwater streams and rivers of South America. In this article, we aimed to expand on the cytogenetic and molecular data available for two allopatric populations of Farlowella hahni. Both populations had diploid chromosome number 58, but with karyotype differences, indicative of chromosomal rearrangements. C-banding showed large heterochromatic blocks at telomeric regions in acrocentric chromosomes in both populations. Fluorescence in situ hybridization (FISH) revealed a single 18S rDNA site in both populations and a single 5S rDNA site for individuals from lower Paraná River basin (native region) and multiple 5S rDNA sites for individuals from upper Paraná River basin (non-native region). Mitochondrial sequence analyses did not separate the two F. hahni populations. The cytogenetic and molecular data obtained are relevant in a preliminary study and suggested the existence of cryptic diversity and the hypothesis that at least two Farlowella lineages may coexist in the Paraná basin.


Subject(s)
Catfishes/genetics , Chromosomes , Cytochromes b/analysis , Cytogenetic Analysis/veterinary , Fish Proteins/analysis , Genetic Variation , Animal Distribution , Animals , Female , Male
2.
Genetica ; 148(1): 25-32, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31997050

ABSTRACT

Cytogenetic data showed a variation in diploid chromosome number in the genus Hyphessobrycon ranging from 2n = 46 to 52, and studies involving repetitive DNA sequences are scarce in representatives of this genus. The purpose of this paper was the chromosomal mapping of repetitive sequences (rDNA, histone genes, U snDNA and microsatellites) and investigation of the amplification of 5S rDNA clusters in the Hyphessobrycon eques genome. Two H. eques populations displayed 2n = 52 chromosomes, with the acrocentric pair No. 24 bearing Ag-NORs corresponding with CMA3+/DAPI-. FISH with a 18S rDNA probe identified the NORs on the short (p) arms of the acrocentric pairs Nos. 22 and 24. The 5S rDNA probe visualized signals on almost all chromosomes in genomes of individuals from both populations (40 signals); FISH with H3 histone probe identified two chromosome pairs, with the pericentromeric location of signals; FISH with a U2 snDNA probe identified one chromosome pair bearing signals, on the interstitial chromosomal region. The mononucleotide (A), dinucleotide (CA) and tetranucleotide (GATA) repeats were observed on the centromeric/pericentromeric and/or terminal positions of all chromosomes, while the trinucleotide (CAG) repeat showed signals on few chromosomes. Molecular analysis of 5S rDNA and non-transcribed spacers (NTS) showed microsatellites (GATA and A repeats) and a fragment of retrotransposon (SINE3/5S-Sauria) inside the sequences. This study expanded the available cytogenetic data for H. eques and demonstrated to the dispersion of the 5S rDNA sequences on almost all chromosomes.


Subject(s)
Characidae/genetics , RNA, Ribosomal, 5S/genetics , Repetitive Sequences, Nucleic Acid/genetics , Animals , Characiformes/genetics , Chromosome Mapping/methods , Chromosomes , DNA, Ribosomal/genetics , Diploidy , Female , Genome/genetics , In Situ Hybridization, Fluorescence/methods , Karyotyping , Male , Microsatellite Repeats , RNA, Ribosomal, 18S/genetics , Species Specificity
3.
Zebrafish ; 16(1): 98-105, 2019 02.
Article in English | MEDLINE | ID: mdl-30358520

ABSTRACT

Astyanax is a genus with a wide distribution ranging from the south United States to north of Patagonia (Argentina). The available cytogenetic data on Astyanax indicate a high karyotypic diversity, with diploid number of 36-52 chromosomes, presence of B chromosomes, heterochromatin polymorphism, and variations with respect to the number and localization of nucleolar organizer regions (NORs) and 18S and 5S ribosomal DNA sites. In the present study, we estimated the evolutionary history and times of divergence for 10 nominal Astyanax species from the South and Central/North American (Cna) continents, which present distinct chromosomal characteristics, based on molecular clocks inferred from mitochondrial DNA sequence. The molecular clock results indicate the origin of three distinct clades (Humeral dark spot [Hds]; Diffuse humeral spot [Dhs]; Cna group) during the late Miocene about 11.2 million years ago (Mya). Thus, Astyanax mexicanus (Cna) represent a species that diverged a long time ago (∼8.6 Mya) from the Hds group, and Astyanax schubarti is the oldest species (∼6.5 Mya) among the Dhs species.


Subject(s)
Biological Evolution , Characidae/classification , Karyotype , Animals , Characidae/genetics , Electron Transport Complex IV/analysis , Evolution, Molecular , Fish Proteins/analysis , Phylogeny
4.
Neotrop. ichthyol ; 17(3): e190069, 2019. graf
Article in English | LILACS, VETINDEX | ID: biblio-1040664

ABSTRACT

Gymnorhamphichthys britskii is a Neotropical electric fish of family Rhamphichthyidae described from the Paraná-Paraguay system. This study reports the first karyotypic description of G. britskii collected from the upper Paraná river basin, which presented 2n=38 chromosomes, karyotype composed of 14 metacentric, 8 submetacentric, 2 subtelocentric and 14 acrocentric chromosomes, and fundamental number as 62 for both sexes. Heteromorphic sex chromosomes were absent. A single pair of nucleolar organizing regions (NORs) was detected in the submetacentric chromosome pair number 9 by silver staining and confirmed by the 18S rDNA probe. The 5S rDNA was located in a single chromosome pair. Heterochromatic regions were clearly observed in the short arms of the NOR-bearing chromosome pair and in the telomeric positions of most acrocentric chromosomes. Besides the present data are valuable to help in understanding karyotypic evolution in Rhamphichthyidae, data from NORs confirmed the tendency of this family in presenting simple NORs sites, similar to the other Gymnotiformes clades. Yet, the presence of a large heterochromatic block in the NOR-bearing chromosome can be used as cytogenetic markers for G. britskii, and that centric fusions appear to be an important mechanism in the karyotype evolution and differentiation among Gymnotiformes species.(AU)


Gymnorhamphichthys britskii é um peixe neotropical da família Rhamphichthyidae descrita no sistema Paraná-Paraguai. Este estudo relata a primeira descrição cariotípica de G. britskii coletado na bacia do alto rio Paraná, que apresentou 2n = 38 cromossomos, cariótipo composto por 14 metacêntricos, 8 submetacêntricos, 2 subtelocêntricos e 14 acrocêntricos, e número fundamental 62 para ambos sexos. Cromossomos sexuais heteromórficos estavam ausentes. Um único par de regiões organizadoras de nucléolos (RONs) foi detectado no par de cromossomos submetacêntricos número 9 por coloração com prata e confirmado pela sonda DNAr 18S. O DNAr 5S foi localizado em um único par cromossômico. Regiões heterocromáticas foram claramente observadas nos braços curtos do par de cromossomos que carrega a RON e nas posições teloméricas da maioria dos cromossomos acrocêntricos. Além dos dados presentes serem valiosos para auxiliar na compreensão da evolução cariotípica em Rhamphichthyidae, dados de RONs confirmaram a tendência desta família em apresentar sítios simples de RONs, semelhantes aos demais clados de Gymnotiformes. No entanto, a presença de um grande bloco heterocromático no cromossomo portador da RON, pode ser usado como marcador citogenético para G. britskii e as fusões cêntricas parecem ser um mecanismo importante na evolução e diferenciação cariotípica entre as espécies de Gymnotiformes.(AU)


Subject(s)
Cytogenetic Analysis/veterinary , Gymnotiformes/genetics , Diploidy , Karyotype
5.
Sex Dev ; 12(4): 204-209, 2018.
Article in English | MEDLINE | ID: mdl-29879699

ABSTRACT

The W chromosome of Megaleporinus trifasciatus was isolated in order to analyze its behavior in the karyotype of this and other species of the family, including forms with differentiated and undifferentiated sex chromosomes. The chromosome was microdissected, and the WMt probe was prepared for the chromosome painting procedure. M. trifasciatus was also cross-hybridized (cross-FISH) using existing probes available for M. macrocephalus (WMm) and M. elongatus (WMe). Two Leporinus species and Semaprochilodus taeniurus, representing a clade close to the Anostomidae, were also cross-hybridized with the objective to better understand the evolution of the sex chromosomes. In the metaphase of female M. trifasciatus, the WMt probe highlighted the whole long arm of the W chromosome and a small, distal portion of the long arm of the Z chromosome. In males, the probe highlighted the distal portion of the long arm of the Z chromosomes. The hybridization of female M. trifasciatus with the WMe and WMm probes revealed a pattern similar to that encountered using the WMt probe. The WMt, WMm, and WMe probes revealed broad similarities among the species of the genus Megaleporinus, which has a ZZ/ZW system of sex chromosomes, with only minor alterations becoming apparent when analyzed separately.


Subject(s)
Characiformes/genetics , Evolution, Molecular , Sex Chromosomes/genetics , Animals , Female , In Situ Hybridization, Fluorescence , Male , Metaphase
6.
Neotrop. ichthyol ; 16(1): e170066, 2018. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-895136

ABSTRACT

The chromosomal location of 5S rRNA and U2 snRNA genes of Piabina argentea, Piabarchus stramineus and two Bryconamericus species from two different Brazilian river basins were investigated, in order to contribute to the understanding of evolutionary characteristics of these repetitive DNAs in the subfamily Stevardiinae. The diploid chromosome number was 2n = 52 for Bryconamericus cf. iheringii, Bryconamericus turiuba, Piabarchus stramineus and Piabina argentea. The 5S rDNA clusters were located on one chromosome pair in P. stramineus and B. cf. iheringii, and on two pairs in B. turiuba and P. argentea. The U2 snDNA clusters were located on the one pair in all species. Two-color FISH experiments showed that the co-localization between 5S rDNA and U2 snDNA in P. stramineus can represent a marker for this species. Thus, the present study demonstrated that the number of U2 snDNA clusters observed for the four species was conserved, but particular characteristics can be found in the genome of each species.(AU)


A localização cromossômica dos genes de RNAr 5S e RNAsn U2 de Piabina argentea, Piabarchus stramineus e duas espécies de Bryconamericus provenientes de duas bacias hidrográficas foi investigada, com a intenção de contribuir com o entendimento de características evolutivas destes DNAs repetitivos na subfamília Stevardiinae. O número cromossômico diploide foi 2n = 52 para Bryconamericus cf. iheringii, Bryconamericus turiuba, Piabarchus stramineus e Piabina argentea. Os sítios de DNAr 5S foram localizados em um par cromossômico em P. stramineus e B. cf. iheringii, e em dois pares em B. turiuba e P. argentea. Os sítios de DNAsn U2 foram localizados em um par em todas as espécies. Experimentos de FISH com duas sondas mostraram que a co-localização entre os DNAr 5S e DNAsn U2 em P. stramineus pode representar um marcador para esta espécie. Portanto, o presente estudo demonstrou que o número de sítios de DNAsn U2 observado para as quatro espécies foi conservado, porém características particulares podem ser encontradas no genoma de cada espécie.(AU)


Subject(s)
Animals , Characidae/genetics , Sequence Analysis, DNA/statistics & numerical data
7.
J Genet ; 96(4): 665-671, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28947715

ABSTRACT

Genus Astyanax is well distributed in Neotropical freshwater environments and its taxonomic position is uncertain, as is the case with other Characidae genera allocated in the group incertae sedis. This study aimed to analyse the karyotype of different populations of Astyanax fasciatus (Corumbataí River basin) using Giemsa staining, C-band technique, and fluorescence in situ hybridization for the H3 histone and 5S rRNA genes, in addition we describe for the first time the chromosomal organization of H3 histone and 5S rRNAgenes in A. marionae (ParaguayRiver basin). Chromosomes of three A. fasciatus populations were analysed (two with 2n = 50 and one with 2n = 48) and the heterochromatin was organized in two forms (blocks with blurred boundaries and distinct blocks). H3 histone and 5S rRNA genes were observed in all the three populations of A. fasciatus on two chromosome pairs (one metacentric chromosome showing H3 histone and 5S rRNA gene clusters). In A. marionae (2n = 48), H3 histone and 5S rRNA genes were observed in one acrocentric chromosome pair (different pairs). Further, differences between karyotypes and heterochromatin, as well as the chromosomal organization of H3 histone and 5S rRNA genes in Astyanax species, focussing on chromosome evolution in the group are discussed.


Subject(s)
Characiformes/classification , Characiformes/genetics , Genes , Heterochromatin/genetics , Repetitive Sequences, Nucleic Acid , Animals , Chromosome Banding , Histones/genetics , Karyotyping , Phylogeny , Phylogeography , RNA, Ribosomal, 5S/genetics
8.
Zebrafish ; 13(6): 565-570, 2016 12.
Article in English | MEDLINE | ID: mdl-27332923

ABSTRACT

Repetitive sequences and their chromosomal locations have been widely studied in species of the Astyanax genus. However, the chromosomal organization of U2 snDNA remains largely unknown. The aims of this study were to examine the chromosomal contexts of U2 snRNA and 5S rRNA genes in Astyanax species and determine the degree of chromosome morphological similarity between species with different diploid numbers. Clusters of U2 snDNA and 5S rDNA were determined in nine species of Astyanax, including two karyomorphs of Astyanax fasciatus Cuvier, 1819. All species exhibited U2 snDNA clusters on two chromosome pairs, except Astyanax mexicanus De Filippi, 1853 (one pair). The 5S rDNA clusters were located on one chromosome pair in Astyanax altiparanae Garutti and Britski, 2000, and Astyanax marionae Eigenmann, 1911, two pairs in Astyanax abramis Jenyns, 1842, Astyanax asuncionensis Géry, 1972, Astyanax bockmanni Vari and Castro, 2007, Astyanax eigenmanniorum Cope, 1894, A. fasciatus (karyomorphs I and II), and Astyanax schubarti Britski, 1964, and four pairs in A. mexicanus. The relationships between the repetitive sequences in different species suggest that A. schubarti and A. mexicanus exhibit an unusual U2 snDNA chromosomal format as a result of events occurring in the evolutionary history of the Astyanax group.


Subject(s)
Characidae/genetics , Karyotype , Multigene Family , RNA, Ribosomal, 5S/genetics , RNA, Small Nuclear/genetics , Animals , Biological Evolution , Brazil , Repetitive Sequences, Nucleic Acid
9.
Cytogenet Genome Res ; 148(1): 44-51, 2016.
Article in English | MEDLINE | ID: mdl-26992246

ABSTRACT

The organization of microsatellites in B and sex chromosomes has been linked to chromosomal evolution in a number of animal groups. Here, the chromosomal organizations of (CA)15, (GA)15, (CG)15, (GACA)4, and (GATA)8 microsatellites were examined in several Astyanax species with different diploid numbers: Astyanax mexicanus (2n = 50 + 1 B chromosome), A. altiparanae (2n = 50), A. marionae (2n = 48), A. fasciatus (2n = 46), and A. schubarti (2n = 36). The (CA)15 and (GA)15 microsatellites were dispersed across the chromosomes of A. altiparanae and A. fasciatus but were also observed as clusters (CA and GA for A. altiparanae, and CA for A. fasciatus). In A. marionae and A. schubarti, the (CA)15 and (GA)15 microsatellites were dispersed but were also observed as clustered signals and coincident with heterochromatic regions. In all 4 of these species, the (CG)15 and (GACA)4 microsatellites were dispersed across chromosomes, and the (GATA)8 microsatellite was co-localized with 5S rDNA. In A. mexicanus, the (CA)15, (GA)15, (CG)15, (GATA)8, and (GACA)4 microsatellites were weakly detected and dispersed across the chromosomes of the A complement. On the B chromosome, signals for the different microsatellites were weak, strong, absent, weak, and absent, respectively. The distribution of microsatellites and the locational relationship between microsatellites and 5S rDNA are discussed, and a possible evolutionary pathway is proposed for microsatellites in Astyanax.


Subject(s)
Characidae/genetics , Chromosomes/genetics , Diploidy , Microsatellite Repeats/genetics , Animals , Characidae/classification , Chromosome Banding , Chromosome Mapping , DNA, Ribosomal/genetics , Evolution, Molecular , Heterochromatin/genetics , In Situ Hybridization, Fluorescence , RNA, Ribosomal, 5S/genetics
10.
Genome ; 59(3): 167-72, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26835745

ABSTRACT

The genus Astyanax is widely distributed from the southern United States to northern Patagonia, Argentina. While cytogenetic studies have been performed for this genus, little is known about the histone gene families. The aim of this study was to examine the chromosomal relationships among the different species of Astyanax. The chromosomal locations of the 5S rRNA and H3 histone genes were determined in A. abramis, A. asuncionensis, A. altiparanae, A. bockmanni, A. eigenmanniorum, A. mexicanus (all 2n = 50), A. fasciatus (2n = 46), and A. schubarti (2n = 36). All eight species exhibited H3 histone clusters on two chromosome pairs. In six species (A. abramis, A. asuncionensis, A. altiparanae, A. bockmanni, A. eigenmanniorum, and A. fasciatus), syntenic clusters of H3 histone and 5S rDNA were observed on metacentric (m) or submetacentric (sm) chromosomes. In seven species, clusters of 5S rDNA sequences were located on one or two chromosome pairs. In A. mexicanus, 5S rDNA clusters were located on four chromosome pairs. This study demonstrates that H3 histone clusters are conserved on two chromosome pairs in the genus Astyanax, and specific chromosomal features may contribute to the genomic organization of the H3 histone and 5S rRNA genes.


Subject(s)
Characiformes/genetics , Chromosome Mapping , Genes, rRNA , Histones/genetics , Synteny , Animals , Characiformes/classification , Diploidy , In Situ Hybridization, Fluorescence , Karyotype , RNA, Ribosomal, 5S/genetics
11.
Comp Cytogenet ; 9(3): 325-33, 2015.
Article in English | MEDLINE | ID: mdl-26310656

ABSTRACT

The Hyphessobrycon are allocated in the incertae sedis group of the Characidae family, one of the genera with more species of the group. The chromosomes of some species of Hyphessobrycon are known, and the diploid number most common for genus is 2n = 50 chromosomes. The aims of this study were to examine the karyotype macrostructure in the Hyphessobryconeques Steindachner, 1882, and show a new origin hypothesis for B chromosomes. The diploid number observed for Hyphessobryconeques was 2n = 52 chromosomes, and a karyotype formulae of 12m + 18sm + 8st + 14a, with FN (fundamental number) = 90 for both sexes. Only two females showed one B chromosome. The heterochromatin was observed mainly on centromeric regions, and in the long arm of the B chromosome. In this paper, the relationship of the B chromosome of Hyphessobryconeques with an occasional chromosome rearrangement was discussed.

12.
Zebrafish ; 12(1): 81-90, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25549064

ABSTRACT

The species of genus Astyanax is widely distributed in freshwater neotropical zones. Astyanax is considered to be taxonomically confused, similar to other genera placed incertae sedis in Characidae. The cytogenetics of this genus is well characterized; species vary widely in diploid number, from 2n=36 chromosomes in Astyanax schubarti to 2n=50 for most species studied. The size, number, and position of different cytological markers vary among species and populations of Astyanax. We analyzed the karyotypes of individuals from three Astyanax species (Astyanax abramis, Astyanax altiparanae, and Astyanax eigenmanniorum) from populations not previously analyzed. We describe variations in several cytogenetic markers and the karyotypic relationships between them, specifically focusing on the characteristics of the conserved and divergent locations of the ribosomal genes. Our data are useful for establishing relationships between species and for investigating the karyotype evolution within the genus.


Subject(s)
Characidae/genetics , Chromosomes/genetics , Animals , Brazil , Chromosome Mapping , Evolution, Molecular , Female , Genetic Variation , Karyotype , Male , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 5S/genetics , Species Specificity
13.
Mol Cytogenet ; 6(1): 13, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23547656

ABSTRACT

BACKGROUND: Nowadays, the genus Bryconamericus is placed in subfamily Stevardiinae within of Characidae, but not shows consistent evidence of monophyletism. The purpose of this work was to study the chromosomes of three species of Bryconamericus, aiming to add cytogenetic knowledge and contribute to the understanding of the chromosomal evolution of this genus. RESULTS: The chromosomes of three species of Bryconamericus were analyzed using cytogenetic techniques. The karyotype of Bryconamericus stramineus contained 6 metacentric (m) + 10 submetacentric (sm) + 16 subtelocentric (st) + 20 acrocentric (a), the fundamental number (FN) of 84, one silver impregnated (Ag-NOR) pair, one pair bearing the 18S ribosomal DNA sites, another pair bearing the 5S rDNA sites, and a few positive C-bands. Bryconamericus turiuba had a karyotype containing 8 m + 10sm + 14st + 20a (FN = 84), one chromosome pair Ag-NOR, two pairs bearing the 18S rDNA sites, two pairs bearing the 5S rDNA sites, and a few C-band regions. Bryconamericus cf. iheringii had a karyotype containing 10 m + 14sm + 18st + 10a (FN = 94), including one pair with a secondary constriction Ag-NOR positive. In this karyotype the fluorescent in situ hybridization (FISH) showed the 18S and 5S rDNA probe in adjacent position. CONCLUSIONS: The results obtained in this work showed different characteristics in the organization of two multigene families, indicating that distinct evolutionary forces acting on the diversity of rDNA sequences in the genome of three Bryconamericus species.

SELECTION OF CITATIONS
SEARCH DETAIL
...