Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Prev Res (Phila) ; 14(3): 313-324, 2021 03.
Article in English | MEDLINE | ID: mdl-33277316

ABSTRACT

We have previously demonstrated that PD-1 blockade decreased the incidence of high-grade dysplasia in a carcinogen-induced murine model of oral squamous cell carcinoma (OSCC). It remains unknown, however, whether there are additional factors involved in escape from immune surveillance that could serve as additional targets for immunoprevention. We performed this study to further characterize the immune landscape of oral premalignant lesions (OPL) and determine the impact of targeting of the PD-1, CTLA-4, CD40, or OX40 pathways on the development of OPLs and oral carcinomas in the 4-nitroquinoline 1-oxide model. The immune pathways were targeted using mAbs or, in the case of the PD-1/PD-L1 pathway, using PD-L1-knockout (PD-L1ko) mice. After intervention, tongues and cervical lymph nodes were harvested and analyzed for malignant progression and modulation of the immune milieu, respectively. Targeting of CD40 with an agonist mAb was the most effective treatment to reduce transition of OPLs to OSCC; PD-1 alone or in combination with CTLA-4 inhibition, or PD-L1ko, also reduced progression of OPLs to OSCC, albeit to a lesser extent. Distinct patterns of immune system modulation were observed for the CD40 agonists compared with blockade of the PD-1/PD-L1 axis with or without CTLA-4 blockade; CD40 agonist generated a lasting expansion of experienced/memory cytotoxic T lymphocytes and M1 macrophages, whereas PD-1/CTLA-4 blockade resulted in a pronounced depletion of regulatory T cells among other changes. These data suggest that distinct approaches may be used for targeting different steps in the development of OSCC, and that CD40 agonists merit investigation as potential immunoprevention agents in this setting. PREVENTION RELEVANCE: PD-1/PD-L1 pathway blockade, as well as activation of the CD40 pathway, were able to prevent OPL progression into invasive OSCC in a murine model. A distinct pattern of immune modulation was observed when either the CD40 or the PD-1/PD-L1 pathways were targeted.


Subject(s)
Antibodies, Monoclonal/pharmacology , B7-H1 Antigen/antagonists & inhibitors , CD40 Antigens/antagonists & inhibitors , Carcinoma, Squamous Cell/drug therapy , Immune Checkpoint Inhibitors/pharmacology , Mouth Neoplasms/drug therapy , Precancerous Conditions/drug therapy , 4-Nitroquinoline-1-oxide/toxicity , Animals , Carcinogens/toxicity , Carcinoma, Squamous Cell/chemically induced , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Female , Immunotherapy , Mice , Mice, Inbred C57BL , Mouth Neoplasms/chemically induced , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Precancerous Conditions/chemically induced , Precancerous Conditions/metabolism , Precancerous Conditions/pathology
2.
Nat Commun ; 11(1): 5156, 2020 10 14.
Article in English | MEDLINE | ID: mdl-33056990

ABSTRACT

The most frequent genetic alterations across multiple human cancers are mutations in TP53 and the activation of the PI3K/AKT pathway, two events crucial for cancer progression. Mutations in TP53 lead to the inhibition of the tumour and metastasis suppressor TAp63, a p53 family member. By performing a mouse-human cross species analysis between the TAp63 metastatic mammary adenocarcinoma mouse model and models of human breast cancer progression, we identified two TAp63-regulated oncogenic lncRNAs, TROLL-2 and TROLL-3. Further, using a pan-cancer analysis of human cancers and multiple mouse models of tumour progression, we revealed that these two lncRNAs induce the activation of AKT to promote cancer progression by regulating the nuclear to cytoplasmic translocation of their effector, WDR26, via the shuttling protein NOLC1. Our data provide preclinical rationale for the implementation of these lncRNAs and WDR26 as therapeutic targets for the treatment of human tumours dependent upon mutant TP53 and/or the PI3K/AKT pathway.


Subject(s)
Adenocarcinoma/genetics , Breast Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Mammary Neoplasms, Experimental/genetics , RNA, Long Noncoding/metabolism , Trans-Activators/metabolism , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adenocarcinoma/pathology , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Disease Progression , Female , Humans , Mammary Glands, Animal/cytology , Mammary Neoplasms, Experimental/pathology , Mice , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Primary Cell Culture , Proto-Oncogene Proteins c-akt/metabolism , RNA-Seq , Signal Transduction/genetics , Tissue Array Analysis , Trans-Activators/genetics , Transcription Factors/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Proteins/genetics , Xenograft Model Antitumor Assays
4.
Cancer Cell ; 36(4): 444-457.e7, 2019 10 14.
Article in English | MEDLINE | ID: mdl-31588020

ABSTRACT

We characterized the landscape and drug sensitivity of ERBB2 (HER2) mutations in cancers. In 11 datasets (n = 211,726), ERBB2 mutational hotspots varied across 25 tumor types. Common HER2 mutants yielded differential sensitivities to eleven EGFR/HER2 tyrosine kinase inhibitors (TKIs) in vitro, and molecular dynamics simulations revealed that mutants with a reduced drug-binding pocket volume were associated with decreased affinity for larger TKIs. Overall, poziotinib was the most potent HER2 mutant-selective TKI tested. Phase II clinical testing in ERBB2 exon 20-mutant non-small cell lung cancer resulted in a confirmed objective response rate of 42% in the first 12 evaluable patients. In pre-clinical models, poziotinib upregulated HER2 cell-surface expression and potentiated the activity of T-DM1, resulting in complete tumor regression with combination treatment.


Subject(s)
Ado-Trastuzumab Emtansine/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Neoplasms/drug therapy , Quinazolines/pharmacology , Receptor, ErbB-2/antagonists & inhibitors , Ado-Trastuzumab Emtansine/therapeutic use , Adult , Animals , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , DNA Mutational Analysis , Datasets as Topic , Disease Models, Animal , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Drug Synergism , Female , Humans , Male , Mice , Mice, Transgenic , Mutation , Neoplasms/genetics , Neoplasms/mortality , Neoplasms/pathology , Progression-Free Survival , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Quinazolines/therapeutic use , Receptor, ErbB-2/genetics
5.
Cancer Res ; 79(13): 3251-3267, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31040157

ABSTRACT

In KRAS-mutant lung adenocarcinoma, tumors with LKB1 loss (KL) are highly enriched for concurrent KEAP1 mutations, which activate the KEAP1/NRF2 pathway (KLK). Here, we investigated the biological consequences of these cooccurring alterations and explored whether they conferred specific therapeutic vulnerabilities. Compared with KL tumors, KLK tumors exhibited increased expression of genes involved in glutamine metabolism, the tricarboxylic acid cycle, and the redox homeostasis signature. Using isogenic pairs with knockdown or overexpression of LKB1, KEAP1, and NRF2, we found that LKB1 loss results in increased energetic and redox stress marked by increased levels of intracellular reactive oxygen species and decreased levels of ATP, NADPH/NADP+ ratio, and glutathione. Activation of the KEAP1/NRF2 axis in LKB1-deficient cells enhanced cell survival and played a critical role in the maintenance of energetic and redox homeostasis in a glutamine-dependent manner. LKB1 and the KEAP1/NRF2 pathways cooperatively drove metabolic reprogramming and enhanced sensitivity to the glutaminase inhibitor CB-839 in vitro and in vivo. Overall, these findings elucidate the adaptive advantage provided by KEAP1/NRF2 pathway activation in KL tumors and support clinical testing of glutaminase inhibitor in subsets of KRAS-mutant lung adenocarcinoma. SIGNIFICANCE: In KRAS-mutant non-small cell lung cancer, LKB1 loss results in enhanced energetic/redox stress, which is tolerated, in part, through cooccurring KEAP1/NRF2-dependent metabolic adaptations, thus enhancing glutamine dependence and vulnerability to glutaminase inhibition.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/13/3251/F1.large.jpg.


Subject(s)
Adenocarcinoma of Lung/pathology , Cellular Reprogramming , Glutamine/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , AMP-Activated Protein Kinase Kinases , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Adenosine Triphosphate/metabolism , Animals , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation , Energy Metabolism , Female , Gene Expression Regulation, Neoplastic , Glutaminase/metabolism , Humans , Kelch-Like ECH-Associated Protein 1/genetics , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Metabolic Networks and Pathways , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Mutation , NF-E2-Related Factor 2/genetics , Oxidative Stress , Protein Serine-Threonine Kinases/genetics , Signal Transduction , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
6.
Toxicol Pathol ; 32(3): 275-94, 2004.
Article in English | MEDLINE | ID: mdl-15204970

ABSTRACT

Artemin (ART) signals through the GFR alpha-3/RET receptor complex to support sympathetic neuron development. Here we show that ART also influences autonomic elements in adrenal medulla and enteric and pelvic ganglia. Transgenic mice over-expressing Art throughout development exhibited systemic autonomic neural lesions including fusion of adrenal medullae with adjacent paraganglia, adrenal medullary dysplasia, and marked enlargement of sympathetic (superior cervical and sympathetic chain ganglia) and parasympathetic (enteric, pelvic) ganglia. Changes began by gestational day 12.5 and formed progressively larger masses during adulthood. Art supplementation in wild type adult mice by administering recombinant protein or an Art-bearing retroviral vector resulted in hyperplasia or neuronal metaplasia at the adrenal corticomedullary junction. Expression data revealed that Gfr alpha-3 is expressed during development in the adrenal medulla, sensory and autonomic ganglia and their projections, while Art is found in contiguous mesenchymal domains (especially skeleton) and in certain nerves. Intrathecal Art therapy did not reduce hypalgesia in rats following nerve ligation. These data (1) confirm that ART acts as a differentiation factor for autonomic (chiefly sympathoadrenal but also parasympathetic) neurons, (2) suggest a role for ART overexpression in the genesis of pheochromocytomas and paragangliomas, and (3) indicate that ART is not a suitable therapy for peripheral neuropathy.


Subject(s)
Autonomic Nervous System/embryology , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Neuroprotective Agents/metabolism , Peripheral Nerves/embryology , Adult , Animals , Autonomic Nervous System/drug effects , Autonomic Nervous System/physiology , Autonomic Nervous System Diseases/pathology , Blotting, Southern , Cells, Cultured , Female , Glial Cell Line-Derived Neurotrophic Factor Receptors , Humans , Male , Mice , Mice, Transgenic , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/pharmacology , Neurons/drug effects , Neuroprotective Agents/pharmacology , Peripheral Nerves/drug effects , Peripheral Nerves/physiology , Peripheral Nervous System Diseases/pathology , Polymerase Chain Reaction , Proto-Oncogene Proteins , Proto-Oncogene Proteins c-ret , Rats , Receptor Protein-Tyrosine Kinases , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...