Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Trends Biochem Sci ; 49(2): 169-182, 2024 02.
Article in English | MEDLINE | ID: mdl-38103971

ABSTRACT

The α-kinase eukaryotic elongation factor 2 kinase (eEF-2K) regulates translational elongation by phosphorylating its ribosome-associated substrate, the GTPase eEF-2. eEF-2K is activated by calmodulin (CaM) through a distinctive mechanism unlike that in other CaM-dependent kinases (CAMK). We describe recent structural insights into this unique activation process and examine the effects of specific regulatory signals on this mechanism. We also highlight key unanswered questions to guide future structure-function studies. These include structural mechanisms which enable eEF-2K to interact with upstream/downstream partners and facilitate its integration of diverse inputs, including Ca2+ transients, phosphorylation mediated by energy/nutrient-sensing pathways, pH changes, and metabolites. Answering these questions is key to establishing how eEF-2K harmonizes translation with cellular requirements within the boundaries of its molecular landscape.


Subject(s)
Elongation Factor 2 Kinase , Protein Biosynthesis , Elongation Factor 2 Kinase/chemistry , Elongation Factor 2 Kinase/genetics , Elongation Factor 2 Kinase/metabolism , Phosphorylation , Calmodulin/chemistry , Calmodulin/genetics , Calmodulin/metabolism
2.
J Biol Chem ; 299(6): 104813, 2023 06.
Article in English | MEDLINE | ID: mdl-37172726

ABSTRACT

The calmodulin-activated α-kinase, eukaryotic elongation factor 2 kinase (eEF-2K), serves as a master regulator of translational elongation by specifically phosphorylating and reducing the ribosome affinity of the guanosine triphosphatase, eukaryotic elongation factor 2 (eEF-2). Given its critical role in a fundamental cellular process, dysregulation of eEF-2K has been implicated in several human diseases, including those of the cardiovascular system, chronic neuropathies, and many cancers, making it a critical pharmacological target. In the absence of high-resolution structural information, high-throughput screening efforts have yielded small-molecule candidates that show promise as eEF-2K antagonists. Principal among these is the ATP-competitive pyrido-pyrimidinedione inhibitor, A-484954, which shows high specificity toward eEF-2K relative to a panel of "typical" protein kinases. A-484954 has been shown to have some degree of efficacy in animal models of several disease states. It has also been widely deployed as a reagent in eEF-2K-specific biochemical and cell-biological studies. However, given the absence of structural information, the precise mechanism of the A-484954-mediated inhibition of eEF-2K has remained obscure. Leveraging our identification of the calmodulin-activatable catalytic core of eEF-2K, and our recent determination of its long-elusive structure, here we present the structural basis for its specific inhibition by A-484954. This structure, which represents the first for an inhibitor-bound catalytic domain of a member of the α-kinase family, enables rationalization of the existing structure-activity relationship data for A-484954 variants and lays the groundwork for further optimization of this scaffold to attain enhanced specificity/potency against eEF-2K.


Subject(s)
Adenosine Triphosphate , Calmodulin , Elongation Factor 2 Kinase , Animals , Humans , Adenosine Triphosphate/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Calmodulin/chemistry , Calmodulin/metabolism , Elongation Factor 2 Kinase/antagonists & inhibitors , Elongation Factor 2 Kinase/chemistry , Elongation Factor 2 Kinase/genetics , Elongation Factor 2 Kinase/metabolism , Peptide Elongation Factor 2/chemistry , Peptide Elongation Factor 2/metabolism , Phosphorylation , Catalytic Domain , Structure-Activity Relationship , Peptide Chain Elongation, Translational
3.
Proc Natl Acad Sci U S A ; 120(17): e2300902120, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37068230

ABSTRACT

Protein translation, one of the most energy-consumptive processes in a eukaryotic cell, requires robust regulation, especially under energy-deprived conditions. A critical component of this regulation is the suppression of translational elongation through reduced ribosome association of the GTPase eukaryotic elongation factor 2 (eEF-2) resulting from its specific phosphorylation by the calmodulin (CaM)-activated α-kinase eEF-2 kinase (eEF-2K). It has been suggested that the eEF-2K response to reduced cellular energy levels is indirect and mediated by the universal energy sensor AMP-activated protein kinase (AMPK) through direct stimulatory phosphorylation and/or downregulation of the eEF-2K-inhibitory nutrient-sensing mTOR pathway. Here, we provide structural, biochemical, and cell-biological evidence of a direct energy-sensing role of eEF-2K through its stimulation by ADP. A crystal structure of the nucleotide-bound complex between CaM and the functional core of eEF-2K phosphorylated at its primary stimulatory site (T348) reveals ADP bound at a unique pocket located on the face opposite that housing the kinase active site. Within this basic pocket (BP), created at the CaM/eEF-2K interface upon complex formation, ADP is stabilized through numerous interactions with both interacting partners. Biochemical analyses using wild-type eEF-2K and specific BP mutants indicate that ADP stabilizes CaM within the active complex, increasing the sensitivity of the kinase to CaM. Induction of energy stress through glycolysis inhibition results in significantly reduced enhancement of phosphorylated eEF-2 levels in cells expressing ADP-binding compromised BP mutants compared to cells expressing wild-type eEF-2K. These results suggest a direct energy-sensing role for eEF-2K through its cooperative interaction with CaM and ADP.


Subject(s)
Calmodulin , Elongation Factor 2 Kinase , Elongation Factor 2 Kinase/metabolism , Calmodulin/metabolism , Allosteric Regulation , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Phosphorylation , Eukaryota/metabolism , Peptide Elongation Factor 2/genetics , Peptide Elongation Factor 2/metabolism
4.
Sci Adv ; 8(27): eabo2039, 2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35857468

ABSTRACT

Translation is a tightly regulated process that ensures optimal protein quality and enables adaptation to energy/nutrient availability. The α-kinase eukaryotic elongation factor 2 kinase (eEF-2K), a key regulator of translation, specifically phosphorylates the guanosine triphosphatase eEF-2, thereby reducing its affinity for the ribosome and suppressing the elongation phase of protein synthesis. eEF-2K activation requires calmodulin binding and autophosphorylation at the primary stimulatory site, T348. Biochemical studies predict a calmodulin-mediated activation mechanism for eEF-2K distinct from other calmodulin-dependent kinases. Here, we resolve the atomic details of this mechanism through a 2.3-Å crystal structure of the heterodimeric complex of calmodulin and the functional core of eEF-2K (eEF-2KTR). This structure, which represents the activated T348-phosphorylated state of eEF-2KTR, highlights an intimate association of the kinase with the calmodulin C-lobe, creating an "activation spine" that connects its amino-terminal calmodulin-targeting motif to its active site through a conserved regulatory element.

5.
Proc Natl Acad Sci U S A ; 119(26): e2201800119, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35737836

ABSTRACT

Bacterial tyrosine kinases (BY-kinases) comprise a family of protein tyrosine kinases that are structurally distinct from their functional counterparts in eukaryotes and are highly conserved across the bacterial kingdom. BY-kinases act in concert with their counteracting phosphatases to regulate a variety of cellular processes, most notably the synthesis and export of polysaccharides involved in biofilm and capsule biogenesis. Biochemical data suggest that BY-kinase function involves the cyclic assembly and disassembly of oligomeric states coupled to the overall phosphorylation levels of a C-terminal tyrosine cluster. This process is driven by the opposing effects of intermolecular autophosphorylation, and dephosphorylation catalyzed by tyrosine phosphatases. In the absence of structural insight into the interactions between a BY-kinase and its phosphatase partner in atomic detail, the precise mechanism of this regulatory process has remained poorly defined. To address this gap in knowledge, we have determined the structure of the transiently assembled complex between the catalytic core of the Escherichia coli (K-12) BY-kinase Wzc and its counteracting low-molecular weight protein tyrosine phosphatase (LMW-PTP) Wzb using solution NMR techniques. Unambiguous distance restraints from paramagnetic relaxation effects were supplemented with ambiguous interaction restraints from static spectral perturbations and transient chemical shift changes inferred from relaxation dispersion measurements and used in a computational docking protocol for structure determination. This structurepresents an atomic picture of the mode of interaction between an LMW-PTP and its BY-kinase substrate, and provides mechanistic insight into the phosphorylation-coupled assembly/disassembly process proposed to drive BY-kinase function.


Subject(s)
Escherichia coli Proteins , Phosphoprotein Phosphatases , Protein-Tyrosine Kinases , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Phosphoprotein Phosphatases/chemistry , Phosphoprotein Phosphatases/metabolism , Phosphorylation , Protein Tyrosine Phosphatases/metabolism , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/metabolism , Tyrosine/metabolism
6.
Protein Sci ; 30(6): 1221-1234, 2021 06.
Article in English | MEDLINE | ID: mdl-33890716

ABSTRACT

The calmodulin (CaM) activated α-kinase, eukaryotic elongation factor 2 kinase (eEF-2K), plays a central role in regulating translational elongation by phosphorylating eukaryotic elongation factor 2 (eEF-2), thereby reducing its ability to associate with the ribosome and suppressing global protein synthesis. Using TR (for truncated), a minimal functional construct of eEF-2K, and utilizing hydrogen/deuterium exchange mass spectrometry (HXMS), solution-state nuclear magnetic resonance (NMR) and biochemical approaches, we investigate the conformational changes accompanying complex formation between Ca2+ -CaM and TR and the effects of autophosphorylation of the latter at Thr348, its primary regulatory site. Our results suggest that a CaM C-lobe surface, complementary to the one involved in recognizing the calmodulin-binding domain (CBD) of TR, provides a secondary TR-interaction platform. CaM helix F, which is part of this secondary surface, responds to both Thr348 phosphorylation and pH changes, indicating its integration into an allosteric network that encompasses both components of the Ca2+ -CaM•TR complex. Solution NMR data suggest that CaMH107K , which carries a helix F mutation, is compromised in its ability to drive the conformational changes in TR necessary to enable efficient Thr348 phosphorylation. Biochemical studies confirm the diminished capacity of CaMH107K to induce TR autophosphorylation compared to wild-type CaM.


Subject(s)
Calmodulin/chemistry , Elongation Factor 2 Kinase/chemistry , Nuclear Magnetic Resonance, Biomolecular , Amino Acid Substitution , Calmodulin/genetics , Elongation Factor 2 Kinase/genetics , Humans , Mutation, Missense , Phosphorylation , Protein Structure, Quaternary , Protein Structure, Secondary
7.
Sci Adv ; 6(51)2020 12.
Article in English | MEDLINE | ID: mdl-33355134

ABSTRACT

BY-kinases represent a highly conserved family of protein tyrosine kinases unique to bacteria without eukaryotic orthologs. BY-kinases are regulated by oligomerization-enabled transphosphorylation on a C-terminal tyrosine cluster through a process with sparse mechanistic detail. Using the catalytic domain (CD) of the archetypal BY-kinase, Escherichia coli Wzc, and enhanced-sampling molecular dynamics simulations, isothermal titration calorimetry and nuclear magnetic resonance measurements, we propose a mechanism for its activation and nucleotide exchange. We find that the monomeric Wzc CD preferentially populates states characterized by distortions at its oligomerization interfaces and by catalytic element conformations that allow high-affinity interactions with ADP but not with ATP·Mg2+ We propose that oligomer formation stabilizes the intermonomer interfaces and results in catalytic element conformations suitable for optimally engaging ATP·Mg2+, facilitating exchange with bound ADP. This sequence of events, oligomerization, i.e., substrate binding, before engaging ATP·Mg2+, facilitates optimal autophosphorylation by preventing a futile cycle of ATP hydrolysis.


Subject(s)
Escherichia coli Proteins , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Membrane Proteins/metabolism , Protein-Tyrosine Kinases/metabolism
8.
Biochemistry ; 59(36): 3290-3299, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32786415

ABSTRACT

Cold unfolding of proteins is predicted by the Gibbs-Helmholtz equation and is thought to be driven by a strongly temperature-dependent interaction of protein nonpolar groups with water. Studies of the cold-unfolded state provide insight into protein energetics, partially structured states, and folding cooperativity and are of practical interest in biotechnology. However, structural characterization of the cold-unfolded state is much less extensive than studies of thermally or chemically denatured unfolded states, in large part because the midpoint of the cold unfolding transition is usually below freezing. We exploit a rationally designed point mutation (I98A) in the hydrophobic core of the C-terminal domain of the ribosomal protein L9 that allows the cold denatured state ensemble to be observed above 0 °C at near neutral pH and ambient pressure in the absence of added denaturants. A combined approach consisting of paramagnetic relaxation enhancement measurements, analysis of small-angle X-ray scattering data, all-atom simulations, and polymer theory provides a detailed description of the cold-unfolded state. Despite a globally expanded ensemble, as determined by small-angle X-ray scattering, sequence-specific medium- and long-range interactions in the cold-unfolded state give rise to deviations from homopolymer-like behavior. Our results reveal that the cold-denatured state is heterogeneous with local and long-range intramolecular interactions that may prime the folded state and also demonstrate that significant long-range interactions are compatible with expanded unfolded ensembles. The work also highlights the limitations of homopolymer-based descriptions of unfolded states of proteins.


Subject(s)
Models, Molecular , Point Mutation , Protein Folding , Ribosomal Proteins/chemistry , Cold Temperature , Hydrophobic and Hydrophilic Interactions , Nuclear Magnetic Resonance, Biomolecular , Protein Denaturation , Protein Structure, Tertiary , Ribosomal Proteins/genetics , Scattering, Small Angle , X-Ray Diffraction
9.
Nat Commun ; 10(1): 5232, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31745079

ABSTRACT

Recently, the targeting of ERK with ATP-competitive inhibitors has emerged as a potential clinical strategy to overcome acquired resistance to BRAF and MEK inhibitor combination therapies. In this study, we investigate an alternative strategy of targeting the D-recruitment site (DRS) of ERK. The DRS is a conserved region that lies distal to the active site and mediates ERK-protein interactions. We demonstrate that the small molecule BI-78D3 binds to the DRS of ERK2 and forms a covalent adduct with a conserved cysteine residue (C159) within the pocket and disrupts signaling in vivo. BI-78D3 does not covalently modify p38MAPK, JNK or ERK5. BI-78D3 promotes apoptosis in BRAF inhibitor-naive and resistant melanoma cells containing a BRAF V600E mutation. These studies provide the basis for designing modulators of protein-protein interactions involving ERK, with the potential to impact ERK signaling dynamics and to induce cell cycle arrest and apoptosis in ERK-dependent cancers.


Subject(s)
Dioxanes/pharmacology , MAP Kinase Signaling System/drug effects , Melanoma/drug therapy , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Thiazoles/pharmacology , Xenograft Model Antitumor Assays , Animals , Apoptosis/drug effects , Apoptosis/genetics , Binding Sites/genetics , Cell Line, Tumor , Cysteine/genetics , Cysteine/metabolism , Dioxanes/metabolism , HEK293 Cells , Humans , MAP Kinase Signaling System/genetics , Melanoma/genetics , Melanoma/metabolism , Mice, Nude , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Molecular Dynamics Simulation , Protein Binding/drug effects , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Thiazoles/metabolism
10.
ACS Chem Biol ; 14(6): 1183-1194, 2019 06 21.
Article in English | MEDLINE | ID: mdl-31058487

ABSTRACT

Extracellular signal-regulated kinases (ERK1/2) are mitogen-activated protein kinases (MAPKs) that play a pro-tumorigenic role in numerous cancers. ERK1/2 possess two protein-docking sites that are distinct from the active site: the D-recruitment site (DRS) and the F-recruitment site. These docking sites facilitate substrate recognition, intracellular localization, signaling specificity, and protein complex assembly. Targeting these sites on ERK in a therapeutic context may overcome many problems associated with traditional ATP-competitive inhibitors. Here, we identified a new class of inhibitors that target the ERK DRS by screening a synthetic combinatorial library of more than 30 million compounds. The screen detects the competitive displacement of a fluorescent peptide from the DRS of ERK2. The top molecular scaffold from the screen was optimized for structure-activity relationship by positional scanning of different functional groups. This resulted in 10 compounds with similar binding affinities and a shared core structure consisting of a tertiary amine hub with three functionalized cyclic guanidino branches. Compound 2507-1 inhibited ERK2 from phosphorylating a DRS-targeting substrate and prevented the phosphorylation of ERK2 by a constitutively active MEK1 (MAPK/ERK kinase 1) mutant. Interaction between an analogue, 2507-8, and the ERK2 DRS was confirmed by nuclear magnetic resonance and X-ray crystallography. 2507-8 forms critical interactions at the common docking domain residue Asp319 via an arginine-like moiety that is shared by all 10 hits, suggesting a common binding mode. The structural and biochemical insights reported here provide the basis for developing new ERK inhibitors that are not ATP-competitive but instead function by disrupting critical protein-protein interactions.


Subject(s)
Mitogen-Activated Protein Kinase 1/metabolism , Binding Sites , Crystallography, X-Ray , Dose-Response Relationship, Drug , Enzyme Activation , Guanidine/pharmacology , Humans , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 1/chemistry , Nuclear Magnetic Resonance, Biomolecular , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Substrate Specificity
11.
J Mol Biol ; 431(15): 2700-2717, 2019 07 12.
Article in English | MEDLINE | ID: mdl-31108082

ABSTRACT

Eukaryotic elongation factor 2 kinase (eEF-2K), an atypical calmodulin-activated protein kinase, regulates translational elongation by phosphorylating its substrate, eukaryotic elongation factor 2 (eEF-2), thereby reducing its affinity for the ribosome. The activation and activity of eEF-2K are critical for survival under energy-deprived conditions and is implicated in a variety of essential physiological processes. Previous biochemical experiments have indicated that the binding site for the substrate eEF-2 is located in the C-terminal domain of eEF-2K, a region predicted to harbor several α-helical repeats. Here, using NMR methodology, we have determined the solution structure of a C-terminal fragment of eEF-2K, eEF-2K562-725 that encodes two α-helical repeats. The structure of eEF-2K562-725 shows signatures characteristic of TPR domains and of their SEL1-like sub-family. Furthermore, using the analyses of NMR spectral perturbations and ITC measurements, we have localized the eEF-2 binding site on eEF-2K562-725. We find that eEF-2K562-725 engages eEF-2 with an affinity comparable to that of the full-length enzyme. Furthermore, eEF-2K562-725 is able to inhibit the phosphorylation of eEF-2 by full-length eEF-2K in trans. Our present studies establish that eEF-2K562-725 encodes the major elements necessary to enable the eEF-2K/eEF-2 interactions.


Subject(s)
Elongation Factor 2 Kinase/chemistry , Amino Acid Sequence , Elongation Factor 2 Kinase/metabolism , Humans , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Peptide Elongation Factor 2/metabolism , Phosphorylation , Protein Conformation , Protein Conformation, alpha-Helical , Protein Domains , Substrate Specificity
12.
Proc Natl Acad Sci U S A ; 114(31): E6287-E6296, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28716922

ABSTRACT

Mitogen-activated protein (MAP) kinase substrates are believed to require consensus docking motifs (D-site, F-site) to engage and facilitate efficient site-specific phosphorylation at specific serine/threonine-proline sequences by their cognate kinases. In contrast to other MAP kinase substrates, the transcription factor Ets-1 has no canonical docking motifs, yet it is efficiently phosphorylated by the MAP kinase ERK2 at a consensus threonine site (T38). Using NMR methodology, we demonstrate that this phosphorylation is enabled by a unique bipartite mode of ERK2 engagement by Ets-1 and involves two suboptimal noncanonical docking interactions instead of a single canonical docking motif. The N terminus of Ets-1 interacts with a part of the ERK2 D-recruitment site that normally accommodates the hydrophobic sidechains of a canonical D-site, retaining a significant degree of disorder in its ERK2-bound state. In contrast, the C-terminal region of Ets-1, including its Pointed (PNT) domain, engages in a largely rigid body interaction with a section of the ERK2 F-recruitment site through a binding mode that deviates significantly from that of a canonical F-site. This latter interaction is notable for the destabilization of a flexible helix that bridges the phospho-acceptor site to the rigid PNT domain. These two spatially distinct, individually weak docking interactions facilitate the highly specific recognition of ERK2 by Ets-1, and enable the optimal localization of its dynamic phospho-acceptor T38 at the kinase active site to enable efficient phosphorylation.


Subject(s)
Mitogen-Activated Protein Kinase 1/metabolism , Phosphorylation/physiology , Proto-Oncogene Protein c-ets-1/metabolism , Apoptosis Regulatory Proteins , Binding Sites/physiology , Catalysis , Humans , MAP Kinase Signaling System/physiology , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 1/genetics , Nuclear Magnetic Resonance, Biomolecular/methods , Phosphoproteins/chemistry , Protein Binding/physiology , Protein Conformation , Proto-Oncogene Protein c-ets-1/genetics
13.
Structure ; 24(9): 1441-51, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27499441

ABSTRACT

Binding of Ca(2+)-loaded calmodulin (CaM) activates eukaryotic elongation factor 2 kinase (eEF-2K) that phosphorylates eEF-2, its only known cellular target, leading to a decrease in global protein synthesis. Here, using an eEF-2K-derived peptide (eEF-2KCBD) that encodes the region necessary for its CaM-mediated activation, we provide a structural basis for their interaction. The striking feature of this association is the absence of Ca(2+) from the CaM C-lobe sites, even under high Ca(2+) conditions. eEF-2KCBD engages CaM largely through the C lobe of the latter in an anti-parallel 1-5-8 hydrophobic mode reinforced by a pair of unique electrostatic contacts. Sparse interactions of eEF-2KCBD with the CaM N lobe results in persisting inter-lobe mobility. A conserved eEF-2K residue (W85) anchors it to CaM by inserting into a deep hydrophobic cavity within the CaM C lobe. Mutation of this residue (W85S) substantially weakens interactions between full-length eEF-2K and CaM in vitro and reduces eEF-2 phosphorylation in cells.


Subject(s)
Calcium/chemistry , Calmodulin/chemistry , Elongation Factor 2 Kinase/chemistry , Peptide Elongation Factors/chemistry , Peptides/chemistry , Amino Acid Sequence , Binding Sites , Calcium/metabolism , Calmodulin/genetics , Calmodulin/metabolism , Cell Line, Tumor , Crystallography, X-Ray , Elongation Factor 2 Kinase/genetics , Elongation Factor 2 Kinase/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Gene Expression , Humans , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Peptide Elongation Factors/genetics , Peptide Elongation Factors/metabolism , Peptides/genetics , Peptides/metabolism , Phosphorylation , Protein Binding , Protein Conformation, alpha-Helical , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Static Electricity , Substrate Specificity , Thermodynamics
14.
Biochemistry ; 55(38): 5377-86, 2016 09 27.
Article in English | MEDLINE | ID: mdl-27571275

ABSTRACT

Eukaryotic elongation factor 2 kinase (eEF-2K) phosphorylates its only known physiological substrate, elongation factor 2 (eEF-2), which reduces the affinity of eEF-2 for the ribosome and results in an overall reduction in protein translation rates. The C-terminal region of eEF-2K, which is predicted to contain several SEL-1-like helical repeats (SLRs), is required for the phosphorylation of eEF-2. Using solution nuclear magnetic resonance methodology, we have determined the structure of a 99-residue fragment from the extreme C-terminus of eEF-2K (eEF-2K627-725) that encompasses a region previously suggested to be essential for eEF-2 phosphorylation. eEF-2K627-725 contains four helices, of which the first (αI) is flexible, and does not pack stably against the ordered helical core formed by the last three helices (αII-αIV). The helical core is structurally similar to members of the tetratricopeptide repeat (TPR) family that includes SLRs. The two penultimate helices, αII and αIII, comprise the TPR, and the last helix, αIV, appears to have a capping function. The eEF-2K627-725 structure illustrates that the C-terminal deletion that was shown to abolish eEF-2 phosphorylation does so by destabilizing αIV and, therefore, the helical core. Indeed, mutation of two conserved C-terminal tyrosines (Y712A/Y713A) in eEF-2K previously shown to abolish eEF-2 phosphorylation leads to the unfolding of eEF-2K627-725. Preliminary functional analyses indicate that neither a peptide encoding a region deemed crucial for eEF-2 binding nor isolated eEF-2K627-725 inhibits eEF-2 phosphorylation by full-length eEF-2K. Taken together, our data suggest that the extreme C-terminal region of eEF-2K, in isolation, does not provide a primary docking site for eEF-2.


Subject(s)
Elongation Factor 2 Kinase/chemistry , Animals , Nuclear Magnetic Resonance, Biomolecular , Phosphorylation , Protein Conformation
16.
Sci Rep ; 5: 11127, 2015 Jun 08.
Article in English | MEDLINE | ID: mdl-26054059

ABSTRACT

The F-recruitment site (FRS) of active ERK2 binds F-site (Phe-x-Phe-Pro) sequences found downstream of the Ser/Thr phospho-acceptor on cellular substrates. Here we apply NMR methods to analyze the interaction between active ERK2 (ppERK2), and a 13-residue F-site-bearing peptide substrate derived from its cellular target, the transcription factor Elk-1. Our results provide detailed insight into previously elusive structural and dynamic features of FRS/F-site interactions and FRS-driven substrate phosphorylation. We show that substrate F-site engagement significantly quenches slow dynamics involving the ppERK2 activation-loop and the FRS. We also demonstrate that the F-site phenylalanines make critical contacts with ppERK2, in contrast to the proline whose cis-trans isomerization has no significant effect on F-site recognition by the kinase FRS. Our results support a mechanism where phosphorylation of the disordered N-terminal phospho-acceptor is facilitated by its increased productive encounters with the ppERK2 active site due to docking of the proximal F-site at the kinase FRS.


Subject(s)
Catalytic Domain/physiology , Mitogen-Activated Protein Kinase 1/metabolism , ets-Domain Protein Elk-1/metabolism , Binding Sites/physiology , DNA/metabolism , Humans , Models, Molecular , Phosphorylation , Protein Conformation
17.
Biochemistry ; 51(41): 8047-9, 2012 Oct 16.
Article in English | MEDLINE | ID: mdl-23030599

ABSTRACT

Hematopoietic tyrosine phosphatase (HePTP) regulates orthogonal MAP kinase signaling cascades by dephosphorylating both extracellular signal-regulated kinase (ERK) and p38. HePTP recognizes a docking site (D-recruitment site, DRS) on its targets using a conserved N-terminal sequence motif (D-motif). Using solution nuclear magnetic resonance spectroscopy and isothermal titration calorimetry, we compare, for the first time, the docking interactions of HePTP with ERK2 and p38α. Our results demonstrate that ERK2-HePTP interactions primarily involve the D-motif, while a contiguous region called the kinase specificity motif also plays a key role in p38α-HePTP interactions. D-Motif-DRS interactions for the two kinases, while similar overall, do show some specific differences.


Subject(s)
Mitogen-Activated Protein Kinase 14/chemistry , Mitogen-Activated Protein Kinase 1/chemistry , Protein Tyrosine Phosphatases, Non-Receptor/chemistry , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular
18.
Methods Mol Biol ; 831: 111-31, 2012.
Article in English | MEDLINE | ID: mdl-22167671

ABSTRACT

NMR analyses of the structure, dynamics, and interactions of the Src family kinases (SFKs) have been hindered by the limited ability to obtain sufficient amounts of properly folded, soluble protein from bacterial expression systems, to allow these studies to be performed in an economically viable manner. In this chapter, we detail our attempts to overcome these difficulties using the catalytic domain (SrcCD) of c-Src, the prototypical SFK, as an illustrative example. We describe in detail two general methods to express and purify SrcCD from Escherichia coli expression systems in both fully active wild-type and kinase-deficient mutant forms, allowing the efficient and cost-effective labeling by NMR-active isotopes for solution NMR studies.


Subject(s)
Bioreactors , Escherichia coli/metabolism , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular/methods , src-Family Kinases/isolation & purification , src-Family Kinases/metabolism , Catalytic Domain/genetics , Chromatography, Gel , Chromatography, Ion Exchange , Electrophoresis, Polyacrylamide Gel , Genetic Vectors/genetics , HSP90 Heat-Shock Proteins/metabolism , Isotope Labeling/methods , src-Family Kinases/genetics
19.
Methods Mol Biol ; 831: 359-68, 2012.
Article in English | MEDLINE | ID: mdl-22167683

ABSTRACT

A first step toward the analysis of the structure, dynamics, and interactions of proteins by NMR is obtaining an acceptable level of resonance assignments. This process is nontrivial in most eukaryotic kinases given their size and suboptimal behavior in solution. Using inactive ERK2 as a representative example, we describe the procedures we utilized to achieve a significant degree of completeness of backbone resonance assignment.


Subject(s)
Mitogen-Activated Protein Kinase 1/chemistry , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Conformation , Spin Labels
20.
PLoS One ; 6(4): e18594, 2011 Apr 11.
Article in English | MEDLINE | ID: mdl-21494553

ABSTRACT

The mechanisms by which MAP kinases recognize and phosphorylate substrates are not completely understood. Efforts to understand the mechanisms have been compromised by the lack of MAPK-substrate structures. While MAPK-substrate docking is well established as a viable mechanism for bringing MAPKs and substrates into close proximity the molecular details of how such docking promotes phosphorylation is an unresolved issue. In the present study computer modeling approaches, with restraints derived from experimentally known interactions, were used to predict how the N-terminus of Ets-1 associates with ERK2. Interestingly, the N-terminus does not contain a consensus-docking site ((R/K)(2-3)-X(2-6)-Φ(A)-X-Φ(B), where Φ is aliphatic hydrophobic) for ERK2. The modeling predicts that the N-terminus of Ets-1 makes important contributions to the stabilization of the complex, but remains largely disordered. The computer-generated model was used to guide mutagenesis experiments, which support the notion that Leu-11 and possibly Ile-13 and Ile-14 of Ets-1 1-138 (Ets) make contributions through binding to the hydrophobic groove of the ERK2 D-recruiting site (DRS). Based on the modeling, a consensus-docking site was introduced through the introduction of an arginine at residue 7, to give the consensus (7)RK-X(2)-Φ(A)-X-Φ(B) (13). This results in a 2-fold increase in k(cat)/K(m) for the phosphorylation of Ets by ERK2. Similarly, the substitution of the N-terminus for two different consensus docking sites derived from Elk-1 and MKK1 also improves k(cat)/K(m) by two-fold compared to Ets. Disruption of the N-terminal docking through deletion of residues 1-23 of Ets results in a 14-fold decrease in k(cat)/K(m), with little apparent change in k(cat). A peptide that binds to the DRS of ERK2 affects K(m), but not k(cat). Our kinetic analysis suggests that the unstructured N-terminus provides 10-fold uniform stabilization of the ground state ERK2•Ets•MgATP complex and intermediates of the enzymatic reaction.


Subject(s)
Computational Biology/methods , Mitogen-Activated Protein Kinase 1/chemistry , Mitogen-Activated Protein Kinase 1/metabolism , Models, Molecular , Proto-Oncogene Protein c-ets-1/chemistry , Proto-Oncogene Protein c-ets-1/metabolism , Amino Acid Sequence , Animals , Biocatalysis , Catalytic Domain , Ligands , Mice , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Molecular Sequence Data , Mutation/genetics , Peptides/chemistry , Phosphorylation , Protein Binding , Protein Conformation , Proto-Oncogene Protein c-ets-1/genetics , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...