Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
Ear Hear ; 20(2): 149-63, 1999 Apr.
Article in English | MEDLINE | ID: mdl-10229516

ABSTRACT

OBJECTIVES: 1) To determine whether multivariate statistical approaches improve the classification of normal and impaired ears based on distortion product otoacoustic emission (DPOAE) measurements, in comparison with the results obtained with more traditional single-variable applications of clinical decision theory. 2) To determine how well the multivariate predictors, derived from analysis on a training group, generalized to a validation group. 3) To provide a way to apply the multivariate approaches clinically. DESIGN: Areas under the relative operating characteristic (ROC) curve and cumulative distributions derived from DPOAE, DPOAE/Noise, discriminant function (DF) scores and logit function (LF) scores were used to compare univariate and multivariate predictors of audiometric status. DPOAE and Noise amplitudes for 8 f2 frequencies were input to a discriminant analysis and to a logistic regression. These analyses generated a DF and LF, respectively, composed of a linear combination of selected variables. The DF and LF scores were the input variables to the decision theory analyses. For comparison purposes, DPOAE test performance was also evaluated using only one variable (DPOAE or DPOAE/Noise when f2 = audiometric frequency). Analyses were based on data from over 1200 ears of 806 subjects, ranging in age from 1.3 to 96 yr, with thresholds ranging from -5 to >120 dB HL. For statistical purposes, normal hearing was defined as thresholds of 20 dB HL or better. For the multivariate analyses, the database was randomly divided into two groups of equal size. One group served as the "training" set, which was used to generate the DFs and LFs. The other group served as a "validation" set to determine the robustness of the DF and LF solutions. RESULTS: For all test frequencies, multivariate analyses yielded greater areas under the ROC curve than univariate analyses, and greater specificities at fixed sensitivities. Within the multivariate techniques, discriminant analysis and logistic regression yielded similar results and both yielded robust solutions that generalized well to the validation groups. The improvement in test performance with multivariate analyses was greatest for conditions in which the single predictor variable resulted in the poorest performance. CONCLUSIONS: A more accurate determination of auditory status at a specific frequency can be obtained by combining multiple predictor variables. Although the DF and LF multivariate approaches resulted in the greatest separation between normal and impaired distributions, overlap still exists, which suggests that there would be value in continued efforts to improve DPOAE test performance.


Subject(s)
Acoustic Stimulation/methods , Audiometry, Speech/methods , Cochlea/physiology , Hearing Disorders/diagnosis , Speech Perception/physiology , Adolescent , Adult , Aged , Aged, 80 and over , Auditory Threshold , Child , Child, Preschool , Humans , Infant , Middle Aged , Multivariate Analysis , Predictive Value of Tests
2.
J Acoust Soc Am ; 105(3): 1749-64, 1999 Mar.
Article in English | MEDLINE | ID: mdl-10089599

ABSTRACT

This study evaluated the accuracy of acoustic response tests in predicting conductive hearing loss in 161 ears of subjects from the age of 2 to 10 yr, using as a "gold standard" the air-bone gap to classify ears as normal or impaired. The acoustic tests included tympanometric peak-compensated static admittance magnitude (SA) and tympanometric gradient at 226 Hz, and admittance-reflectance (YR) measurements from 0.5 to 8 kHz. The performance of individual, frequency-specific, YR test variables as predictors was assessed. By applying logistic regression (LR) and discriminant analysis (DA) techniques to the multivariate YR response, two univariate functions were calculated as the linear combinations of YR variables across frequency that best separated normal and impaired ears. The tympanometric and YR tests were also combined in a multivariate manner to test whether predictive efficacy improved when 226-Hz tympanometry was added to the predictor set. Conductive hearing loss was predicted based on air-bone gap thresholds at 0.5 and 2 kHz, and on a maximum air-bone gap at any octave frequency from 0.5 to 4 kHz. Each air-bone gap threshold ranged from 5 to 30 dB in 5-dB steps. Areas under the relative operating characteristic curve for DA and LR were larger than for reflectance at 2 kHz, SA and Gr. For constant hit rates of 80% and 90%, both DA and LR scores had lower false-alarm rates than tympanometric tests-LR achieved a false-alarm rate of 6% for a sensitivity of 90%. In general, LR outperformed DA as the multivariate technique of choice. In predicting an impairment at 0.5 kHz, the reflectance scores at 0.5 kHz were less accurate predictors than reflectance at 2 and 4 kHz. This supports the hypothesis that the 2-4-kHz range is a particularly sensitive indicator of middle-ear status, in agreement with the spectral composition of the output predictor from the multivariate analyses. When tympanometric and YR tests were combined, the resulting predictor performed slightly better or the same as the predictor calculated from the use of the YR test alone. The main conclusion is that these multivariate acoustic tests of the middle ear, which are analyzed using a clinical decision theory, are effective predictors of conductive hearing loss.


Subject(s)
Ear Canal/physiology , Hearing Loss, Conductive/diagnosis , Speech Acoustics , Acoustic Impedance Tests/methods , Audiometry, Speech/methods , Auditory Threshold/physiology , Bone Conduction/physiology , Child , Child, Preschool , Decision Theory , Ear, Middle/physiology , Hearing Loss, Conductive/etiology , Humans , Male , Models, Biological , Multivariate Analysis , Otitis Media/complications , Perceptual Masking , Predictive Value of Tests , Prognosis
3.
J Acoust Soc Am ; 104(3 Pt 1): 1517-43, 1998 Sep.
Article in English | MEDLINE | ID: mdl-9745736

ABSTRACT

A class of cochlear models which account for much of the characteristic variation with frequency of human otoacoustic emissions and hearing threshold microstructure is presented. The models are based upon wave reflections via distributed spatial cochlear inhomogeneities and tall and broad cochlear activity patterns, as suggested by Zweig and Shera [J. Acoust. Soc. Am. 98, 2018-2047 (1995)]. They successfully describe in particular the following features: (1) the characteristic quasiperiodic frequency variations (fine structures) of the hearing threshold, synchronous and click-evoked emissions, distortion-product emissions, and spontaneous emissions; (2) the relationships between these fine structures; and (3) the distortion product emission filter shape. All of the characteristic frequency spacings are approximately the same (0.4 bark) and are mainly determined by the phase behavior of the apical reflection function. The frequency spacings for spontaneous emissions and threshold microstructure are predicted to be the same, but some deviations from these values are predicted for synchronous and click-evoked and distortion-product emissions. The analysis of models is aided considerably by the use of the solutions of apical, and basal, moving solutions (basis functions) of the cochlear wave equation in the absence of inhomogeneities.


Subject(s)
Auditory Threshold/physiology , Cochlea/physiology , Acoustic Stimulation , Basilar Membrane/physiology , Humans , Models, Biological , Reflex, Acoustic
4.
J Acoust Soc Am ; 104(2 Pt 1): 964-71, 1998 Aug.
Article in English | MEDLINE | ID: mdl-9714916

ABSTRACT

Interactions among age, threshold, and frequency in relation to distortion product otoacoustic emissions (DPOAE) have yet to be resolved. The effects of these variables were explored by analyzing DPOAEs in ears with thresholds not exceeding 20 dB HL. Multivariate regression analyses were performed in two different ways. For data to be included in the first analysis, audiometric threshold had to be 20 dB HL or better only at the particular frequency under study, but might exceed 20 dB HL at other half-octave frequencies. Significant main effects were found for age, threshold, and frequency. There was also an age-by-frequency interaction, but a significant age-by-threshold interaction was not observed. DPOAE amplitudes decreased as either age, frequency, or threshold increased. In the second analysis, when a more stringent inclusion criterion was applied (normal thresholds at all frequencies), the main effects for age, threshold, and frequency were not significant. The significant age-by-frequency interaction remained, whereby DPOAE amplitudes decreased as age and frequency increased, but the age-by-threshold interaction again was not significant. The magnitude of DPOAE amplitude change across age, threshold, and frequency and for the age-by-frequency interaction was small but similar for both groups of subjects. Age in association with threshold did not account for observed changes in DPOAE amplitudes for either group. Importantly, the lack of a significant age-by-threshold interaction indicates that there may be processes intrinsic to aging alone that act on DPOAE generation.


Subject(s)
Auditory Threshold , Cochlea/physiology , Acoustic Stimulation , Adolescent , Adult , Age Factors , Aged , Audiometry, Pure-Tone , Child , Electric Stimulation , Humans , Middle Aged
5.
Protet Stomatol ; 38(6): 253-7, 1988.
Article in Polish | MEDLINE | ID: mdl-3270920

ABSTRACT

The authors have examined 63 patients whom 86 partial removable dentures: functionally unstable dentures and supported ones in all have been made. The state of paradontium basing on G-I gingival index and Pl-I plaque index has been estimated. It has been found that the state of paradontium in the group of supported dentures irrespective of the utilization life was better than in the group of functionally unstable dentures.


Subject(s)
Denture, Partial, Removable , Periodontium/physiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...