Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Adv ; 147: 213343, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36801797

ABSTRACT

The outer retina consists of the light-sensitive photoreceptors, the pigmented epithelium, and the choroid, which interact in a complex manner to sustain homeostasis. The organisation and function of these cellular layers are mediated by the extracellular matrix compartment named Bruch's membrane, situated between the retinal epithelium and the choroid. Like many tissues, the retina experiences age-related structural and metabolic changes, which are relevant for understanding major blinding diseases of the elderly, such as age-related macular degeneration. Compared with other tissues, the retina mainly comprises postmitotic cells, making it less able to maintain its mechanical homeostasis over the years functionally. Aspects of retinal ageing, like the structural and morphometric changes of the pigment epithelium and the heterogenous remodelling of the Bruch's membrane, imply changes in tissue mechanics and may affect functional integrity. In recent years, findings in the field of mechanobiology and bioengineering highlighted the importance of mechanical changes in tissues for understanding physiological and pathological processes. Here, we review the current knowledge of age-related changes in the outer retina from a mechanobiological perspective, aiming to generate food for thought for future mechanobiology studies in the outer retina.


Subject(s)
Macular Degeneration , Pigment Epithelium of Eye , Humans , Aged , Pigment Epithelium of Eye/metabolism , Pigment Epithelium of Eye/pathology , Retina/metabolism , Retina/pathology , Choroid/metabolism , Choroid/pathology , Bruch Membrane/metabolism , Bruch Membrane/pathology , Macular Degeneration/metabolism , Macular Degeneration/pathology
2.
Front Cell Dev Biol ; 10: 901038, 2022.
Article in English | MEDLINE | ID: mdl-35646906

ABSTRACT

Keratin intermediate filaments are dynamic cytoskeletal components that are responsible for tuning the mechanical properties of epithelial tissues. Although it is known that keratin filaments (KFs) are able to sense and respond to changes in the physicochemical properties of the local niche, a direct correlation of the dynamic three-dimensional network structure at the single filament level with the microenvironment has not been possible. Using conventional approaches, we find that keratin flow rates are dependent on extracellular matrix (ECM) composition but are unable to resolve KF network organization at the single filament level in relation to force patterns. We therefore developed a novel method that combines a machine learning-based image restoration technique and traction force microscopy to decipher the fine details of KF network properties in living cells grown on defined ECM patterns. Our approach utilizes Content-Aware Image Restoration (CARE) to enhance the temporal resolution of confocal fluorescence microscopy by at least five fold while preserving the spatial resolution required for accurate extraction of KF network structure at the single KF/KF bundle level. The restored images are used to segment the KF network, allowing numerical analyses of its local properties. We show that these tools can be used to study the impact of ECM composition and local mechanical perturbations on KF network properties and corresponding traction force patterns in size-controlled keratinocyte assemblies. We were thus able to detect increased curvature but not length of KFs on laminin-322 versus fibronectin. Photoablation of single cells in microprinted circular quadruplets revealed surprisingly little but still significant changes in KF segment length and curvature that were paralleled by an overall reduction in traction forces without affecting global network orientation in the modified cell groups irrespective of the ECM coating. Single cell analyses furthermore revealed differential responses to the photoablation that were less pronounced on laminin-332 than on fibronectin. The obtained results illustrate the feasibility of combining multiple techniques for multimodal monitoring and thereby provide, for the first time, a direct comparison between the changes in KF network organization at the single filament level and local force distribution in defined paradigms.

3.
Elife ; 112022 02 18.
Article in English | MEDLINE | ID: mdl-35179484

ABSTRACT

Mechanobiology requires precise quantitative information on processes taking place in specific 3D microenvironments. Connecting the abundance of microscopical, molecular, biochemical, and cell mechanical data with defined topologies has turned out to be extremely difficult. Establishing such structural and functional 3D maps needed for biophysical modeling is a particular challenge for the cytoskeleton, which consists of long and interwoven filamentous polymers coordinating subcellular processes and interactions of cells with their environment. To date, useful tools are available for the segmentation and modeling of actin filaments and microtubules but comprehensive tools for the mapping of intermediate filament organization are still lacking. In this work, we describe a workflow to model and examine the complete 3D arrangement of the keratin intermediate filament cytoskeleton in canine, murine, and human epithelial cells both, in vitro and in vivo. Numerical models are derived from confocal airyscan high-resolution 3D imaging of fluorescence-tagged keratin filaments. They are interrogated and annotated at different length scales using different modes of visualization including immersive virtual reality. In this way, information is provided on network organization at the subcellular level including mesh arrangement, density and isotropic configuration as well as details on filament morphology such as bundling, curvature, and orientation. We show that the comparison of these parameters helps to identify, in quantitative terms, similarities and differences of keratin network organization in epithelial cell types defining subcellular domains, notably basal, apical, lateral, and perinuclear systems. The described approach and the presented data are pivotal for generating mechanobiological models that can be experimentally tested.


Subject(s)
Cytoskeleton , Keratins , Actin Cytoskeleton/metabolism , Animals , Cytoskeletal Proteins/metabolism , Cytoskeleton/metabolism , Dogs , Humans , Intermediate Filaments/metabolism , Keratins/analysis , Mice
4.
Front Bioeng Biotechnol ; 8: 596599, 2020.
Article in English | MEDLINE | ID: mdl-33330427

ABSTRACT

Understanding the complexity of the extracellular matrix (ECM) and its variability is a necessary step on the way to engineering functional (bio)materials that serve their respective purposes while relying on cell adhesion. Upon adhesion, cells receive messages which contain both biochemical and mechanical information. The main focus of mechanobiology lies in investigating the role of this mechanical coordination in regulating cellular behavior. In recent years, this focus has been additionally shifted toward cell collectives and the understanding of their behavior as a whole mechanical continuum. Collective cell phenomena very much apply to epithelia which are either simple cell-sheets or more complex three-dimensional structures. Researchers have been mostly using the organization of monolayers to observe their collective behavior in well-defined experimental setups in vitro. Nevertheless, recent studies have also reported the impact of ECM remodeling on epithelial morphogenesis in vivo. These new concepts, combined with the knowledge of ECM biochemical complexity are of key importance for engineering new interactive materials to support both epithelial remodeling and homeostasis. In this review, we summarize the structure and heterogeneity of the ECM before discussing its impact on the epithelial mechanobiology.

SELECTION OF CITATIONS
SEARCH DETAIL
...