Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
2.
J Med Chem ; 65(7): 5593-5605, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35298158

ABSTRACT

We have identified a series of novel insulin receptor partial agonists (IRPAs) with a potential to mitigate the risk of hypoglycemia associated with the use of insulin as an antidiabetic treatment. These molecules were designed as dimers of native insulin connected via chemical linkers of variable lengths with optional capping groups at the N-terminals of insulin chains. Depending on the structure, the maximal activation level (%Max) varied in the range of ∼20-70% of native insulin, and EC50 values remained in sub-nM range. Studies in minipig and dog demonstrated that IRPAs had sufficient efficacy to normalize plasma glucose levels in diabetes, while providing reduction of hypoglycemia risk. IRPAs had a prolonged duration of action, potentially making them suitable for once-daily dosing. Two lead compounds with %Max values of 30 and 40% relative to native insulin were selected for follow up studies in the clinic.


Subject(s)
Diabetes Mellitus, Type 2 , Hypoglycemia , Animals , Blood Glucose , Diabetes Mellitus, Type 2/drug therapy , Dogs , Hypoglycemia/drug therapy , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Receptor, Insulin , Swine , Swine, Miniature , Therapeutic Index
3.
Nat Commun ; 13(1): 942, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35177603

ABSTRACT

Insulin analogs have been developed to treat diabetes with focus primarily on improving the time action profile without affecting ligand-receptor interaction or functional selectivity. As a result, inherent liabilities (e.g. hypoglycemia) of injectable insulin continue to limit the true therapeutic potential of related agents. Insulin dimers were synthesized to investigate whether partial agonism of the insulin receptor (IR) tyrosine kinase is achievable, and to explore the potential for tissue-selective systemic insulin pharmacology. The insulin dimers induced distinct IR conformational changes compared to native monomeric insulin and substrate phosphorylation assays demonstrated partial agonism. Structurally distinct dimers with differences in conjugation sites and linkers were prepared to deliver desirable IR partial agonist (IRPA). Systemic infusions of a B29-B29 dimer in vivo revealed sharp differences compared to native insulin. Suppression of hepatic glucose production and lipolysis were like that attained with regular insulin, albeit with a distinctly shallower dose-response. In contrast, there was highly attenuated stimulation of glucose uptake into muscle. Mechanistic studies indicated that IRPAs exploit tissue differences in receptor density and have additional distinctions pertaining to drug clearance and distribution. The hepato-adipose selective action of IRPAs is a potentially safer approach for treatment of diabetes.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 1/drug therapy , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Receptor, Insulin/agonists , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Alloxan/administration & dosage , Alloxan/toxicity , Animals , Blood Glucose/drug effects , Blood Glucose/metabolism , CHO Cells , Cricetulus , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/chemically induced , Diabetes Mellitus, Type 1/metabolism , HEK293 Cells , Humans , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Lipolysis/drug effects , Liver/drug effects , Liver/metabolism , Male , Mice , Rats , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Signal Transduction/drug effects , Swine , Swine, Miniature
4.
J Med Chem ; 63(15): 8216-8230, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32786237

ABSTRACT

Herein, we disclose three structurally differentiated γ-secretase modulators (GSMs) based on an oxadiazine scaffold. The analogues from series I potently inhibit the generation of Aß42 in vitro when the substituents at 3 and 4 positions of the oxadiazine moiety adopt an α orientation (cf. 11). To address the concern around potential reactivity of the exocyclic double bond present in series I toward nucleophilic attack, compounds containing either an endocyclic double bond, such as 20 (series II), or devoid of an olefinic moiety, such as 27 (series III), were designed and validated as novel GSMs. Compound 11 and azepine 20 exhibit robust lowering of CSF Aß42 in rats treated with a 30 mg/kg oral dose.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Alkenes/chemistry , Alkenes/pharmacology , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/cerebrospinal fluid , Animals , Binding Sites/physiology , HEK293 Cells , Humans , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/cerebrospinal fluid , Rats , Structure-Activity Relationship
5.
Chembiochem ; 21(3): 315-319, 2020 02 03.
Article in English | MEDLINE | ID: mdl-31283075

ABSTRACT

NMR measurements of rotational and translational diffusion are used to characterize the solution behavior of a wide variety of therapeutic proteins and peptides. The timescales of motions sampled in these experiments reveal complicated intrinsic solution behavior such as flexibility, that is central to function, as well as self-interactions, stress-induced conformational changes and other critical attributes that can be discovery and development liabilities. Trends from proton transverse relaxation (R2 ) and hydrodynamic radius (Rh ) are correlated and used to identify and differentiate intermolecular from intramolecular interactions. In this study, peptide behavior is consistent with complicated multimer self-assembly, while multi-domain protein behavior is dominated by intramolecular interactions. These observations are supplemented by simulations that include effects from slow transient interactions and rapid internal motions. R2 -Rh correlations provide a means to profile protein motions as well as interactions. The approach is completely general and can be applied to therapeutic and target protein characterization.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular , Peptides/chemistry , Proteins/chemistry
6.
Bioconjug Chem ; 30(4): 1127-1132, 2019 04 17.
Article in English | MEDLINE | ID: mdl-30946565

ABSTRACT

A synthetic method to access novel azido-insulin analogs directly from recombinant human insulin (RHI) was developed via diazo-transfer chemistry using imidazole-1-sulfonyl azide. Systematic optimization of reaction conditions led to site-selective azidation of amino acids B1-phenylalanine and B29-lysine present in RHI. Subsequently, the azido-insulin analogs were used in azide-alkyne [3 + 2] cycloaddition reactions to synthesize a diverse array of triazole-based RHI bioconjugates that were found to be potent human insulin receptor binders. The utility of this method was further demonstrated by the concise and controlled synthesis of a heterotrisubstituted insulin conjugate.


Subject(s)
Azides/chemical synthesis , Insulin/chemistry , Amino Acid Sequence , Amino Acids/chemistry , Azides/chemistry , Cycloaddition Reaction , Humans , Recombinant Proteins/chemistry , Triazoles/chemistry
7.
ACS Med Chem Lett ; 8(10): 1002-1006, 2017 Oct 12.
Article in English | MEDLINE | ID: mdl-29057041

ABSTRACT

The design and synthesis of a new series of tetrahydrobenzisoxazoles as modulators of γ-secretase activity and their structure-activity relationship (SAR) will be detailed. Several compounds are active γ-secretase modulators (GSMs) with good to excellent selectivity for the reduction of Aß42 in the cellular assay. Compound 14a was tested in vivo in a nontransgenic rat model and was found to significantly reduce Aß42 in the CNS compartment compared to vehicle-treated animals (up to 58% reduction of cerebrospinal fluid Aß42 as measured 3 h after an acute oral dosing at 30 mg/kg).

8.
Bioorg Med Chem ; 24(21): 5534-5545, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27670099

ABSTRACT

Molecular modeling of unbound tricyclic guanine scaffolds indicated that they can serve as effective bioisosteric replacements of xanthines. This notion was further confirmed by a combination of X-ray crystallography and SAR studies, indicating that tricyclic guanine DPP4 inhibitors mimic the binding mode of xanthine inhibitors, exemplified by linagliptin. Realization of the bioisosteric relationship between these scaffolds potentially will lead to a wider application of cyclic guanines as xanthine replacements in drug discovery programs for a variety of biological targets. Newly designed DPP4 inhibitors achieved sub-nanomolar potency range and demonstrated oral activity in vivo in mouse glucose tolerance test.


Subject(s)
Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Guanine/pharmacology , Xanthines/pharmacology , Animals , Blood Glucose/drug effects , Crystallography, X-Ray , Dipeptidyl-Peptidase IV Inhibitors/administration & dosage , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Dose-Response Relationship, Drug , Glucose Tolerance Test , Guanine/analogs & derivatives , Guanine/chemistry , Humans , Male , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Xanthines/administration & dosage , Xanthines/chemistry
9.
Eur J Med Chem ; 124: 36-48, 2016 Nov 29.
Article in English | MEDLINE | ID: mdl-27560281

ABSTRACT

The design, synthesis, SAR, and biological profile of a substituted 4-morpholine sulfonamide series of γ-secretase inhibitors (GSIs) were described. In several cases, the resulting series of GSIs reduced CYP liabilities and improved γ-secretase inhibition activity compared to our previous research series. Selected compounds demonstrated significant reduction of amyloid-ß (Aß) after acute oral dosing in a transgenic animal model of Alzheimer's disease (AD).


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Morpholines/chemistry , Morpholines/pharmacology , Sulfonamides/chemistry , Alzheimer Disease/drug therapy , Animals , Enzyme Inhibitors/therapeutic use , Female , Male , Mice , Morpholines/therapeutic use , Structure-Activity Relationship
10.
ACS Med Chem Lett ; 7(5): 498-501, 2016 May 12.
Article in English | MEDLINE | ID: mdl-27190600

ABSTRACT

In our efforts to develop second generation DPP-4 inhibitors, we endeavored to identify distinct structures with long-acting (once weekly) potential. Taking advantage of X-ray cocrystal structures of sitagliptin and other DPP-4 inhibitors, such as alogliptin and linagliptin bound to DPP-4, and aided by molecular modeling, we designed several series of heterocyclic compounds as initial targets. During their synthesis, an unexpected chemical transformation provided a novel tricyclic scaffold that was beyond our original design. Capitalizing on this serendipitous discovery, we have elaborated this scaffold into a very potent and selective DPP-4 inhibitor lead series, as highlighted by compound 17c.

11.
Nucleosides Nucleotides Nucleic Acids ; 35(6): 277-94, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27104963

ABSTRACT

Novel 2'-modified guanosine nucleosides were synthesized from inexpensive starting materials in 7-10 steps via hydroazidation or hydrocyanation reactions of the corresponding 2'-olefin. The antiviral effectiveness of the guanosine nucleosides was evaluated by converting them to the corresponding 5'-O-triphosphates (compounds 38-44) and testing their biochemical inhibitory activity against the wild-type NS5B polymerase.


Subject(s)
Antiviral Agents/chemical synthesis , Guanine Nucleotides/chemical synthesis , Nucleic Acid Synthesis Inhibitors/chemical synthesis , Viral Nonstructural Proteins/antagonists & inhibitors , Alkenes/chemical synthesis , Azides/chemical synthesis , Hepacivirus/enzymology , Viral Nonstructural Proteins/chemistry
12.
J Med Chem ; 58(22): 8806-17, 2015 Nov 25.
Article in English | MEDLINE | ID: mdl-26496070

ABSTRACT

In the present paper, we described the design, synthesis, SAR, and biological profile of a novel spirocyclic sulfone series of γ-secretase inhibitors (GSIs) related to MRK-560. We utilized an additional spirocyclic ring system to stabilize the active chair conformation of the parent γ-secretase inhibitors. The resulting series is devoid of the CYP2C9 inhibition liability of MRK-560. A few representative analogs were assessed in a nontransgenic animal model of Alzheimer's disease (AD), demonstrating reduction of amyloid-ß (Aß) in the CNS after acute oral dosing. A spirocyclic phosphonate was identified as the optimal ring system for both potency and pharmacokinetics. Compared to GSIs studied in the clinic, representative spirocyclic phosphonate 18a(-) features improved selectivity for the inhibition of the PS-1 isoform of γ-secretase (33-fold vs PS-2), which may alleviate the adverse effect profile of the clinical GSIs.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Drug Discovery/methods , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Animals , Biological Availability , Central Nervous System/drug effects , Central Nervous System/metabolism , Cytochrome P-450 CYP2C9/metabolism , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/pharmacokinetics , HEK293 Cells , Humans , Molecular Conformation , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Sulfonamides/pharmacology
13.
Int J Alzheimers Dis ; 2013: 823528, 2013.
Article in English | MEDLINE | ID: mdl-23573456

ABSTRACT

Substantial evidence implicates ß-amyloid (Aß) peptides in the etiology of Alzheimer's disease (AD). Aß is produced by the proteolytic cleavage of the amyloid precursor protein by ß- and γ-secretase suggesting that γ-secretase inhibition may provide therapeutic benefit for AD. Although many γ-secretase inhibitors have been shown to be potent at lowering Aß, some have also been shown to have side effects following repeated administration. All of these side effects can be attributed to altered Notch signaling, another γ-secretase substrate. Here we describe the in vivo characterization of the novel γ-secretase inhibitor SCH 697466 in rodents. Although SCH 697466 was effective at lowering Aß, Notch-related side effects in the intestine and thymus were observed following subchronic administration at doses that provided sustained and complete lowering of Aß. However, additional studies revealed that both partial but sustained lowering of Aßand complete but less sustained lowering of Aß were successful approaches for managing Notch-related side effects. Further, changes in several Notch-related biomarkers paralleled the side effect observations. Taken together, these studies demonstrated that, by carefully varying the extent and duration of Aß lowering by γ-secretase inhibitors, it is possible to obtain robust and sustained lowering of Aß without evidence of Notch-related side effects.

14.
Bioorg Med Chem Lett ; 23(2): 466-71, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23253441

ABSTRACT

In an attempt to further improve overall profiles of the oxadiazine series of GSMs, in particular the hERG activity, conformational modifications of the core structure resulted in the identification of fused oxadiazepines such as 7i which had an improved hERG inhibition profile and was a highly efficacious GSM in vitro and in vivo in rats. These SAR explorations offer opportunities to identify potential drugs to treat Alzheimer's disease.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases/metabolism , Azepines/chemical synthesis , Drug Discovery , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Animals , Azepines/chemistry , Azepines/pharmacology , ERG1 Potassium Channel , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Inhibitory Concentration 50 , Molecular Structure , Rats , Structure-Activity Relationship
15.
J Med Chem ; 55(1): 489-502, 2012 Jan 12.
Article in English | MEDLINE | ID: mdl-22098494

ABSTRACT

Cyclic hydroxyamidines were designed and validated as isosteric replacements of the amide functionality. Compounds with these structural motifs were found to be metabolically stable and to possess highly desirable pharmacokinetic profiles. These designs were applied in the identification of γ-secretase modulators leading to highly efficacious agents for reduction of central nervous system Aß(42) in various animal models.


Subject(s)
Amidines/chemical synthesis , Amyloid Precursor Protein Secretases/metabolism , Oxadiazoles/chemical synthesis , Oxazines/chemical synthesis , Amidines/pharmacokinetics , Amidines/pharmacology , Amyloid beta-Peptides/metabolism , Animals , Brain/metabolism , Dogs , HEK293 Cells , Humans , Macaca fascicularis , Male , Oxadiazoles/pharmacokinetics , Oxadiazoles/pharmacology , Oxazines/pharmacokinetics , Oxazines/pharmacology , Peptide Fragments/metabolism , Rats , Stereoisomerism , Structure-Activity Relationship
16.
ACS Med Chem Lett ; 3(11): 931-5, 2012 Nov 08.
Article in English | MEDLINE | ID: mdl-24900409

ABSTRACT

Fused oxadiazines (3) were discovered as selective and orally bioavailable γ-secretase modulators (GSMs) based on the structural framework of oxadiazoline GSMs. Although structurally related, initial modifications showed that structure-activity relationships (SARs) did not translate from the oxadiazoline to the oxadiazine series. Subsequent SAR studies on modifications at the C3 and C4 positions of the fused oxadiazine core helped to identify GSMs such as compounds 8r and 8s that were highly efficacious in vitro and in vivo in a number of animal models with highly desirable physical and pharmacological properties. Further improvements of in vitro activity and selectivity were achieved by the preparation of fused morpholine oxadiazines. The shift in specificity of APP cleavage rather than a reduction in overall γ-secretase activity and the lack of changes in substrate accumulation and Notch processing as observed in the animal studies of compound 8s confirm that the oxadiazine series of compounds are potent GSMs.

17.
Bioorg Med Chem Lett ; 21(2): 664-9, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-21195610

ABSTRACT

We herein report the discovery of four series of fused 5,6-bicyclic heterocycles as γ-secretase modulators. Synthesis and SAR of these series are discussed. These compounds represent a new class of γ-secretase modulators that demonstrate moderate to good in vitro potency in inhibiting Aß(42) production.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Animals , Bridged Bicyclo Compounds, Heterocyclic/pharmacokinetics , Humans , Rats , Structure-Activity Relationship
18.
Bioorg Med Chem Lett ; 20(8): 2591-6, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20236824

ABSTRACT

A novel series of tricyclic gamma-secretase inhibitors was designed and synthesized via a conformational analysis of literature compounds. The preliminary results have shown that compounds in this new series have much improved in vitro potency and in vivo profiles. More importantly, they have greatly reduced Notch related toxicity that was associated with previous gamma-secretase inhibitors.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Receptors, Notch/drug effects , Sulfones/chemistry , Sulfones/pharmacology , Animals , Crystallography, X-Ray , Drug Design , Mice , Models, Molecular , Sulfones/chemical synthesis
19.
Bioorg Med Chem Lett ; 18(1): 215-9, 2008 Jan 01.
Article in English | MEDLINE | ID: mdl-17988864

ABSTRACT

The design of amide and heteroaryl amide isosteres as replacements for the carbamate substructure in previously disclosed 2,6-disubstituted piperidine N-arylsulfonamides is described. In several cases, amides lessened CYP liabilities in this class of gamma-secretase inhibitors. Selected compounds showed significant reduction of Abeta levels upon oral dosing in a transgenic murine model of Alzheimer's disease.


Subject(s)
Amides/chemistry , Amides/pharmacology , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Amides/pharmacokinetics , Amyloid beta-Peptides/metabolism , Animals , Carbamates/chemistry , Carbamates/pharmacokinetics , Carbamates/pharmacology , Cytochrome P-450 Enzyme Inhibitors , Heterocyclic Compounds/pharmacokinetics , Mice , Oxadiazoles/chemistry , Oxadiazoles/pharmacokinetics , Oxadiazoles/pharmacology , Piperidines/chemistry , Piperidines/pharmacokinetics , Piperidines/pharmacology , Protease Inhibitors/pharmacokinetics , Rats , Structure-Activity Relationship
20.
J Comb Chem ; 10(1): 56-62, 2008.
Article in English | MEDLINE | ID: mdl-17988101

ABSTRACT

A novel methodology for parallel liquid-phase synthesis of carbamates suitable for the preparation of sterically hindered molecules is disclosed. The alcohols are converted to 4-nitrophenylcarbonates, followed by the reaction with amines. Side product 4-nitrophenol and the unreacted excess amines are scavenged by appropriately chosen cleanup resins, selected among Amberlyst A26 (hydroxide form) and macroporous sulfonic acid (MP-TsOH) or polystyrene isocyanate (PS-NCO) and polystyrene benzaldehyde (PS-PhCHO) resins. As a part of a medicinal chemistry program directed toward finding gamma-secretase inhibitors as prospective drug candidates for Alzheimer's disease, a 6 x 24 library of carbamates was prepared. Out of 144 library members, 133 had a purity for the targeted compound of 80% or better. The prepared compounds were assessed in the gamma-secretase inhibition assay and demonstrated activity with IC 50 values in the range from 1 microM to 5 nM, with the activity of 7 compounds being better than 10 nM.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Carbamates , Combinatorial Chemistry Techniques , Enzyme Inhibitors , Small Molecule Libraries , Amyloid beta-Protein Precursor/biosynthesis , Amyloid beta-Protein Precursor/genetics , Carbamates/chemical synthesis , Carbamates/chemistry , Carbamates/pharmacology , Cell Line , Cell Membrane/drug effects , Cell Membrane/enzymology , Cell Membrane/metabolism , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Molecular Structure , Mutation , Phase Transition , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Solutions , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...