Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(10)2023 May 11.
Article in English | MEDLINE | ID: mdl-37430583

ABSTRACT

Over the past few years, several applications have been extensively exploiting the advantages of deep learning, in particular when using convolutional neural networks (CNNs). The intrinsic flexibility of such models makes them widely adopted in a variety of practical applications, from medical to industrial. In this latter scenario, however, using consumer Personal Computer (PC) hardware is not always suitable for the potential harsh conditions of the working environment and the strict timing that industrial applications typically have. Therefore, the design of custom FPGA (Field Programmable Gate Array) solutions for network inference is gaining massive attention from researchers and companies as well. In this paper, we propose a family of network architectures composed of three kinds of custom layers working with integer arithmetic with a customizable precision (down to just two bits). Such layers are designed to be effectively trained on classical GPUs (Graphics Processing Units) and then synthesized to FPGA hardware for real-time inference. The idea is to provide a trainable quantization layer, called Requantizer, acting both as a non-linear activation for neurons and a value rescaler to match the desired bit precision. This way, the training is not only quantization-aware, but also capable of estimating the optimal scaling coefficients to accommodate both the non-linear nature of the activations and the constraints imposed by the limited precision. In the experimental section, we test the performance of this kind of model while working both on classical PC hardware and a case-study implementation of a signal peak detection device running on a real FPGA. We employ TensorFlow Lite for training and comparison, and use Xilinx FPGAs and Vivado for synthesis and implementation. The results show an accuracy of the quantized networks close to the floating point version, without the need for representative data for calibration as in other approaches, and performance that is better than dedicated peak detection algorithms. The FPGA implementation is able to run in real time at a rate of four gigapixels per second with moderate hardware resources, while achieving a sustained efficiency of 0.5 TOPS/W (tera operations per second per watt), in line with custom integrated hardware accelerators.

2.
Sensors (Basel) ; 23(12)2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37420537

ABSTRACT

In computational photography, high dynamic range (HDR) imaging refers to the family of techniques used to recover a wider range of intensity values compared to the limited range provided by standard sensors. Classical techniques consist of acquiring a scene-varying exposure to compensate for saturated and underexposed regions, followed by a non-linear compression of intensity values called tone mapping. Recently, there has been a growing interest in estimating HDR images from a single exposure. Some methods exploit data-driven models trained to estimate values outside the camera's visible intensity levels. Others make use of polarimetric cameras to reconstruct HDR information without exposure bracketing. In this paper, we present a novel HDR reconstruction method that employs a single PFA (polarimetric filter array) camera with an additional external polarizer to increase the scene's dynamic range across the acquired channels and to mimic different exposures. Our contribution consists of a pipeline that effectively combines standard HDR algorithms based on bracketing and data-driven solutions designed to work with polarimetric images. In this regard, we present a novel CNN (convolutional neural network) model that exploits the underlying mosaiced pattern of the PFA in combination with the external polarizer to estimate the original scene properties, and a second model designed to further improve the final tone mapping step. The combination of such techniques enables us to take advantage of the light attenuation given by the filters while producing an accurate reconstruction. We present an extensive experimental section in which we validate the proposed method on both synthetic and real-world datasets specifically acquired for the task. Quantitative and qualitative results show the effectiveness of the approach when compared to state-of-the-art methods. In particular, our technique exhibits a PSNR (peak signal-to-noise ratio) on the whole test set equal to 23 dB, which is 18% better with respect to the second-best alternative.


Subject(s)
Data Compression , Algorithms , Neural Networks, Computer , Photography , Signal-To-Noise Ratio
3.
IEEE Trans Image Process ; 31: 2017-2026, 2022.
Article in English | MEDLINE | ID: mdl-35167453

ABSTRACT

Polarisation Filter Array (PFA) cameras allow the analysis of light polarisation state in a simple and cost-effective manner. Such filter arrays work as the Bayer pattern for colour cameras, sharing similar advantages and drawbacks. Among the others, the raw image must be demosaiced considering the local variations of the PFA and the characteristics of the imaged scene. Non-linear effects, like the cross-talk among neighbouring pixels, are difficult to explicitly model and suggest the potential advantage of a data-driven learning approach. However, the PFA cannot be removed from the sensor, making it difficult to acquire the ground-truth polarization state for training. In this work we propose a novel CNN-based model which directly demosaics the raw camera image to a per-pixel Stokes vector. Our contribution is twofold. First, we propose a network architecture composed by a sequence of Mosaiced Convolutions operating coherently with the local arrangement of the different filters. Second, we introduce a new method, employing a consumer LCD screen, to effectively acquire real-world data for training. The process is designed to be invariant by monitor gamma and external lighting conditions. We extensively compared our method against algorithmic and learning-based demosaicing techniques, obtaining a consistently lower error especially in terms of polarisation angle.

SELECTION OF CITATIONS
SEARCH DETAIL
...