Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 270, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191555

ABSTRACT

Many genes that drive normal cellular development also contribute to oncogenesis. Medulloblastoma (MB) tumors likely arise from neuronal progenitors in the cerebellum, and we hypothesized that the heterogeneity observed in MBs with sonic hedgehog (SHH) activation could be due to differences in developmental pathways. To investigate this question, here we perform single-nucleus RNA sequencing on highly differentiated SHH MBs with extensively nodular histology and observed malignant cells resembling each stage of canonical granule neuron development. Through innovative computational approaches, we connect these results to published datasets and find that some established molecular subtypes of SHH MB appear arrested at different developmental stages. Additionally, using multiplexed proteomic imaging and MALDI imaging mass spectrometry, we identify distinct histological and metabolic profiles for highly differentiated tumors. Our approaches are applicable to understanding the interplay between heterogeneity and differentiation in other cancers and can provide important insights for the design of targeted therapies.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Humans , Hedgehog Proteins/genetics , Medulloblastoma/genetics , Proteomics , Cerebellum , Cerebellar Neoplasms/genetics
2.
Sci Transl Med ; 15(712): eadi0069, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37672566

ABSTRACT

The lack of reliable predictive biomarkers to guide effective therapy is a major obstacle to the advancement of therapy for high-grade gliomas, particularly glioblastoma (GBM), one of the few cancers whose prognosis has not improved over the past several decades. With this pilot clinical trial (number NCT04135807), we provide first-in-human evidence that drug-releasing intratumoral microdevices (IMDs) can be safely and effectively used to obtain patient-specific, high-throughput molecular and histopathological drug response profiling. These data can complement other strategies to inform the selection of drugs based on their observed antitumor effect in situ. IMDs are integrated into surgical practice during tumor resection and remain in situ only for the duration of the otherwise standard operation (2 to 3 hours). None of the six enrolled patients experienced adverse events related to the IMD, and the exposed tissue was usable for downstream analysis for 11 out of 12 retrieved specimens. Analysis of the specimens provided preliminary evidence of the robustness of the readout, compatibility with a wide array of techniques for molecular tissue interrogation, and promising similarities with the available observed clinical-radiological responses to temozolomide. From an investigational aspect, the amount of information obtained with IMDs allows characterization of tissue effects of any drugs of interest, within the physiological context of the intact tumor, and without affecting the standard surgical workflow.


Subject(s)
Glioblastoma , Glioma , Humans , Glioma/drug therapy , Drug Delivery Systems , Drug Liberation , Temozolomide/therapeutic use
3.
Sci Rep ; 9(1): 13720, 2019 09 23.
Article in English | MEDLINE | ID: mdl-31548553

ABSTRACT

This work reports the process of sensor development, optimization, and characterization before the transition to on-body measurements can be made. Sensors using lactate oxidase as a sensing mechanism and tetrathiafulvalene as a mediator were optimized for sporting applications. Optimized sensors show linear range up to 24 mM lactate and sensitivity of 4.8 µA/mM which normalizes to 68 µA*cm-2/mM when accounting for surface area of the sensor. The optimized sensors were characterized 3 different ways: using commercially available reference and counter electrodes, using printed reference and counter electrodes, and using a printed reference electrode with no counter electrode. Sensors intended for measuring sweat must be selective in the presence of sweat constituents. Thus, in addition to traditional characterization in pH 7.0 buffer, we characterized sensor performance in solutions intended to approximate sweat. Sensor performance in pH 7.0 buffer solution was not reflective of sensor performance in artificial sweat, indicating that further characterization is necessary between sensor measurement in pH 7.0 buffer and on-body measurements. Furthermore, we performed enzyme activity measurements and sensor measurements concurrently in five different salts individually, finding that while NH4Cl and MgCl2 do not affect enzyme activity or sensor performance in physiologically relevant ranges of salt concentration, NaCl concentration or KCl concentration decreases enzyme activity and sensor current. On the other hand, CaCl2 induced a nonlinear change in sensor performance and enzyme activity with increasing salt concentration.

SELECTION OF CITATIONS
SEARCH DETAIL
...