Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Biol Sci ; 290(2003): 20231170, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37464761

ABSTRACT

Population-level shifts in reproductive phenology in response to environmental change are common, but whether individual-level responses are modified by demographic and genetic factors remains less well understood. We used mixed models to quantify how reproductive timing varied across 1772 female southern elephant seals (Mirounga leonina) breeding at Marion Island in the Southern Ocean (1989-2019), and to identify the factors that correlate with phenological shifts within and between individuals. We found strong support for covariation in the timing of breeding arrival dates and the timing of the preceding moult. Breeding arrival dates were more repeatable at the individual level, as compared with the population level, even after accounting for individual traits (wean date as a pup, age and breeding experience) associated with phenological variability. Mother-daughter similarities in breeding phenology were also evident, indicating that additive genetic effects may contribute to between-individual variation in breeding phenology. Over 30 years, elephant seal phenology did not change towards earlier or later dates, and we found no correlation between annual fluctuations in phenology and indices of environmental variation. Our results show how maternal genetic (or non-genetic) effects, individual traits and linkages between cyclical life-history events can drive within- and between-individual variation in reproductive phenology.


Subject(s)
Reproduction , Seals, Earless , Animals , Female , Climate Change , Molting , Mothers , Phenotype , Reproduction/physiology
2.
R Soc Open Sci ; 6(6): 190333, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31312494

ABSTRACT

Visual and olfactory signals are commonly used by seabirds to locate prey in the horizontal domain, but foraging success depends on prey depth and the seabird's ability to access it. Facilitation by diving seabirds has long been hypothesized as a mechanism to elevate deep prey to regions more accessible to volant seabirds, but this has never been demonstrated empirically. Footage from animal-borne video loggers deployed on African penguins was analysed to establish if volant seabird encounters involved active cuing by seabirds on penguins to obtain prey and, during mutual prey encounters, if interactions were driven by the vertical displacement of prey by penguins. Independent of prey biomass estimates, we found a strong inverse relationship between penguin group size, a proxy for visibility, and the time elapsed from the start of penguins' dive bouts to their first encounter with other seabirds. Most mutual prey encounters (7 of 10) involved schooling prey elevated from depths greater than 33 m by penguins and only pursued by other seabird species once prey was herded into shallow waters. This is likely to enhance foraging efficiency in volant seabird species. As such, penguins may be integral to important processes that influence the structure and integrity of marine communities.

3.
Oecologia ; 121(2): 201-211, 1999 Nov.
Article in English | MEDLINE | ID: mdl-28308560

ABSTRACT

This study quantified both the age- and sex-specific survival rates of juveniles and adults, and tested for interannual differences in age-specific survival rates of the southern elephant seal population at Marion Island. Pups were tagged on an annual basis from 1983 onwards at Marion Island, and a consistent recapture program yielded data that was analysed using the software package MARK to obtain maximum-likelihood estimates of survival and capture probability. On average, 1st-year survival was 0.58 and 0.62, and survival rate averaged over the first 3 years of life, 0.69 and 0.74 for males and females, respectively. From years 4 to 9, the average survival rate was 0.66 and 0.75 for males and females, respectively. Survival estimates for elephant seals in their 10th-13th year are also presented, although these are based on very small sample sizes. Averages of age-specific survival estimates from the earlier (mostly 1983-1987 cohorts) and later (mostly 1988-1992 cohorts) periods were compared and considerable reductions were observed in 4th- and 5th-year male survival, and 4th-year female survival. The comparatively low adult survival is suggested as the proximate cause, and food limitation as deduced from the decline in survival of elephant seals with comparatively high energetic demands as the ultimate cause behind the population decline at Marion Island. Although not tied in with the decline of the population, 1987, 1990 and 1993 were identified as high-mortality years.

SELECTION OF CITATIONS
SEARCH DETAIL
...