Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomicrofluidics ; 9(4): 044116, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26339316

ABSTRACT

We analyze a recently introduced approach for the sorting of aqueous drops with biological content immersed in oil, using a microfluidic chip that combines the functionality of electrowetting with the high throughput of two-phase flow microfluidics. In this electrostatic sorter, three co-planar electrodes covered by a thin dielectric layer are placed directly below the fluidic channel. Switching the potential of the central electrode creates an electrical guide that leads the drop to the desired outlet. The generated force, which deflects the drop, can be tuned via the voltage. The working principle is based on a contrast in conductivity between the drop and the continuous phase, which ensures successful operation even for drops of highly conductive biological media like phosphate buffered saline. Moreover, since the electric field does not penetrate the drop, its content is protected from electrical currents and Joule heating. A simple capacitive model allows quantitative prediction of the electrostatic forces exerted on drops. The maximum achievable sorting rate is determined by a competition between electrostatic and hydrodynamic forces. Sorting speeds up to 1200 per second are demonstrated for conductive drops of 160 pl in low viscosity oil.

2.
Lab Chip ; 14(5): 883-91, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24394887

ABSTRACT

Precise control and manipulation of individual drops are crucial in many lab-on-a-chip applications. We present a novel hybrid concept for channel-based discrete microfluidics with integrated electrowetting functionality by incorporating co-planar electrodes (separated by a narrow gap) in one of the microchannel walls. By combining the high throughput of channel-based microfluidics with the individual drop control achieved using electrical actuation, we acquire the strengths of both worlds. The tunable strength of the electrostatic forces enables a wide range of drop manipulations, such as on-demand trapping and release, guiding, and sorting of drops in the microchannel. In each of these scenarios, the retaining electrostatic force competes with the hydrodynamic drag force. The conditions for trapping can be predicted using a simple model that balances these forces.


Subject(s)
Microfluidic Analytical Techniques/methods , Dimethylpolysiloxanes/chemistry , Electrodes , Electrowetting , Microfluidic Analytical Techniques/instrumentation , Models, Theoretical , Static Electricity , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...