Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Endocrinol (Lausanne) ; 14: 1247542, 2023.
Article in English | MEDLINE | ID: mdl-37964967

ABSTRACT

Background: CDK4/6 inhibitors (CDK4/6i) have been established as standard treatment against advanced Estrogen Receptor-positive breast cancers. These drugs are being tested against several cancers, including in combinations with other therapies. We identified the T172-phosphorylation of CDK4 as the step determining its activity, retinoblastoma protein (RB) inactivation, cell cycle commitment and sensitivity to CDK4/6i. Poorly differentiated (PDTC) and anaplastic (ATC) thyroid carcinomas, the latter considered one of the most lethal human malignancies, represent major clinical challenges. Several molecular evidence suggest that CDK4/6i could be considered for treating these advanced thyroid cancers. Methods: We analyzed by two-dimensional gel electrophoresis the CDK4 modification profile and the presence of T172-phosphorylated CDK4 in a collection of 98 fresh-frozen tissues and in 21 cell lines. A sub-cohort of samples was characterized by RNA sequencing and immunohistochemistry. Sensitivity to CDK4/6i (palbociclib and abemaciclib) was assessed by BrdU incorporation/viability assays. Treatment of cell lines with CDK4/6i and combination with BRAF/MEK inhibitors (dabrafenib/trametinib) was comprehensively evaluated by western blot, characterization of immunoprecipitated CDK4 and CDK2 complexes and clonogenic assays. Results: CDK4 phosphorylation was detected in all well-differentiated thyroid carcinomas (n=29), 19/20 PDTC, 16/23 ATC and 18/21 thyroid cancer cell lines, including 11 ATC-derived ones. Tumors and cell lines without phosphorylated CDK4 presented very high p16CDKN2A levels, which were associated with proliferative activity. Absence of CDK4 phosphorylation in cell lines was associated with CDK4/6i insensitivity. RB1 defects (the primary cause of intrinsic CDK4/6i resistance) were not found in 5/7 tumors without detectable phosphorylated CDK4. A previously developed 11-gene expression signature identified the likely unresponsive tumors, lacking CDK4 phosphorylation. In cell lines, palbociclib synergized with dabrafenib/trametinib by completely and permanently arresting proliferation. These combinations prevented resistance mechanisms induced by palbociclib, most notably Cyclin E1-CDK2 activation and a paradoxical stabilization of phosphorylated CDK4 complexes. Conclusion: Our study supports further clinical evaluation of CDK4/6i and their combination with anti-BRAF/MEK therapies as a novel effective treatment against advanced thyroid tumors. Moreover, the complementary use of our 11 genes predictor with p16/KI67 evaluation could represent a prompt tool for recognizing the intrinsically CDK4/6i insensitive patients, who are potentially better candidates to immediate chemotherapy.


Subject(s)
Imidazoles , Oximes , Proline/analogs & derivatives , Thiocarbamates , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Humans , Phosphorylation , Proto-Oncogene Proteins B-raf/genetics , Cell Line, Tumor , Thyroid Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Thyroid Carcinoma, Anaplastic/drug therapy , Mitogen-Activated Protein Kinase Kinases/metabolism , Cyclin-Dependent Kinase 4
2.
Cell Cycle ; 21(1): 12-32, 2022 01.
Article in English | MEDLINE | ID: mdl-34913830

ABSTRACT

Cyclin-dependent kinase 4 (CDK4) is a master integrator that couples mitogenic/oncogenic signaling with the cell division cycle. It is deregulated in most cancers and inhibitors of CDK4 have become standard of care drugs for metastatic estrogen-receptor positive breast cancers and are being evaluated in a variety of other cancers. We previously characterized the T-loop phosphorylation at T172 of CDK4 as the highly regulated step that determines the activity of cyclin D-CDK4 complexes. Moreover we demonstrated that the highly variable detection of T172-phosphorylated CDK4 signals the presence or absence of the active CDK4 targeted by the CDK4/6 inhibitory drugs, which predicts the tumor cell sensitivity to these drugs including palbociclib. To date, the phosphorylation of CDK4 has been very poorly studied because only few biochemical techniques and reagents are available for it. In addition, the available ones including 2D-IEF separation of CDK4 modified forms are considered too tedious. The present report describes the generation, selection and characterization of the first monoclonal antibodies that specifically recognize the active CDK4 phosphorylated on its T172 residue. One key to this success was the immunization with a long phosphopeptide corresponding to the complete activation segment of CDK4. These monoclonal antibodies specifically recognize T172-phosphorylated CDK4 in a variety of assays, including western blotting, immunoprecipitation and, as a capture antibody, a sensitive ELISA from cell lysates. The specific immunoprecipitation of T172-phosphorylated CDK4 allowed to clarify the involvement of phosphorylations of co-immunoprecipitated p21 and p27, showing a privileged interaction of T172-phosphorylated CDK4 with S130-phosphorylated p21 and S10-phosphorylated p27. Abbreviations: 2D: two-dimensional; CAK: CDK-activating kinase; CDK: cyclin-dependent kinase; HAT: Hypoxanthine-Aminopterin-Thymidine; FBS: fetal bovine serum; IP: immunoprecipitation; ID: immunodetection; mAb: monoclonal antibody; PAGE: polyacrylamide gel electrophoresis; PBS: phosphate buffer saline; pRb: retinoblastoma susceptibility protein; SDS: sodium dodecyl sulfate; DTT: dithiotreitol; TET: tetracyclin repressor; Avi: Avi tag; TEV: tobacco etch virus cleavage site; EGFP: enhanced green fluorescent protein; BirA: bifunctional protein biotin ligase BirA; IRES: internal ribosome entry site; HIS: poly-HIS purification tag; DELFIA: dissociation-enhanced lanthanide fluorescent immunoassay; 3-MBPP1: 1-(1,1-dimethylethyl)-3[(3-methylphenyl) methyl]-1H-pyrazolo[3,4-d] pyrimidin-4-amine; BSA: bovine serum albumin; ECL: Enhanced chemiluminescence.


Subject(s)
Antibodies, Monoclonal , Neoplasms , Cell Cycle , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Humans , Neoplasms/metabolism , Phosphorylation , Retinoblastoma Protein/metabolism
3.
EMBO Mol Med ; 9(8): 1052-1066, 2017 08.
Article in English | MEDLINE | ID: mdl-28566333

ABSTRACT

Cyclin D-CDK4/6 are the first CDK complexes to be activated in the G1 phase in response to oncogenic pathways. The specific CDK4/6 inhibitor PD0332991 (palbociclib) was recently approved by the FDA and EMA for treatment of advanced ER-positive breast tumors. Unfortunately, no reliable predictive tools are available for identifying potentially responsive or insensitive tumors. We had shown that the activating T172 phosphorylation of CDK4 is the central rate-limiting event that initiates the cell cycle decision and signals the presence of active CDK4. Here, we report that the profile of post-translational modification including T172 phosphorylation of CDK4 differs among breast tumors and associates with their subtypes and risk. A gene expression signature faithfully predicted CDK4 modification profiles in tumors and cell lines. Moreover, in breast cancer cell lines, the CDK4 T172 phosphorylation best correlated with sensitivity to PD0332991. This gene expression signature identifies tumors that are unlikely to respond to CDK4/6 inhibitors and could help to select a subset of patients with HER2-positive and basal-like tumors for clinical studies on this class of drugs.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/pathology , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 4/chemistry , Piperazines/pharmacology , Protein Processing, Post-Translational , Pyridines/pharmacology , Transcriptome , Cell Cycle/drug effects , Cell Line, Tumor , Female , Humans , Microarray Analysis , Phosphorylation , Protein Kinase Inhibitors/pharmacology
4.
Oncotarget ; 7(32): 52475-52492, 2016 08 09.
Article in English | MEDLINE | ID: mdl-27248468

ABSTRACT

As in many cancer types, miRNA expression profiles and functions have become an important field of research on non-medullary thyroid carcinomas, the most common endocrine cancers. This could lead to the establishment of new diagnostic tests and new cancer therapies. However, different studies showed important variations in their research strategies and results. In addition, the action of miRNAs is poorly considered as a whole because of the use of underlying dogmatic truncated concepts. These lead to discrepancies and limits rarely considered. Recently, this field has been enlarged by new miRNA functional and expression studies. Moreover, studies using next generation sequencing give a new view of general miRNA differential expression profiles of papillary thyroid carcinoma. We analyzed in detail this literature from both physiological and differential expression points of view. Based on explicit examples, we reviewed the progresses but also the discrepancies and limits trying to provide a critical approach of where this literature may lead. We also provide recommendations for future studies. The conclusions of this systematic analysis could be extended to other cancer types.


Subject(s)
MicroRNAs/analysis , Thyroid Neoplasms/genetics , Gene Expression Profiling , Humans , MicroRNAs/biosynthesis , Transcriptome
5.
PLoS One ; 9(11): e111581, 2014.
Article in English | MEDLINE | ID: mdl-25375362

ABSTRACT

BACKGROUND: For thyroid tumorigenesis, two main human in vitro models are available: primary cultures of human thyrocytes treated with TSH or EGF/serum as models for autonomous adenomas (AA) or papillary thyroid carcinomas (PTC) respectively, and human thyroid tumor derived cell lines. Previous works of our group have assessed properties of those models, with a special emphasis on mRNA regulations. It is often assumed that miRNA may be one of the primary events inducing these mRNA regulations. METHODS: The purpose of this study was to investigate the representativity of those models to study microRNA regulations and their relation with mRNA expression. To achieve this aim, the miRNA expressions profiles of primary cultures treated with TSH or EGF/serum and of 6 thyroid cancer cell lines were compared to the expression profiles of 35 tumor tissues obtained by microarrays. RESULTS: Our data on primary cultures have shown that the TSH or EGF/serum treatment did not greatly modify the microRNA expression profiles, which is contrary to what is observed for mRNA expression profiles, although they still evolved differently according to the treatment. The analysis of miRNA and mRNA expressions profiles in the cell lines has shown that they have evolved into a common, dedifferentiated phenotype, closer to ATC than to the tumors they are derived from. CONCLUSIONS: Long-terms TSH or EGF/serum treatments do not mimic AA or PTC respectively in terms of miRNA expression as they do for mRNA, suggesting that the regulations of mRNA expression induced by these physiological agents occur independently of miRNA. The general patterns of miRNA expression in the cell lines suggest that they represent a useful model for undifferentiated thyroid cancer. Mirna probably do not mediate the rapid changes in gene expression in rapid cell biology regulation.


Subject(s)
Carcinoma, Papillary/genetics , Gene Expression Regulation, Neoplastic/drug effects , MicroRNAs/genetics , RNA, Messenger/genetics , Thyroid Neoplasms/genetics , Carcinoma, Papillary/metabolism , Carcinoma, Papillary/pathology , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Epidermal Growth Factor/pharmacology , Humans , MicroRNAs/metabolism , Oligonucleotide Array Sequence Analysis , RNA, Messenger/metabolism , Thyroid Gland/drug effects , Thyroid Gland/metabolism , Thyroid Gland/pathology , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/pathology , Thyrotropin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...