Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Pers Med ; 14(5)2024 May 20.
Article in English | MEDLINE | ID: mdl-38793127

ABSTRACT

More than 7000 rare diseases affect over 400 million people, posing significant challenges for medical research and healthcare. The integration of precision medicine with artificial intelligence offers promising solutions. This work introduces a classifier developed to discern whether research and news articles pertain to rare or non-rare diseases. Our methodology involves extracting 709 rare disease MeSH terms from Mondo and MeSH to improve rare disease categorization. We evaluate our classifier on abstracts from PubMed/MEDLINE and an expert-annotated news dataset, which includes news articles on four selected rare neurodevelopmental disorders (NDDs)-considered the largest category of rare diseases-from a total of 16 analyzed. We achieved F1 scores of 85% for abstracts and 71% for news articles, demonstrating robustness across both datasets and highlighting the potential of integrating artificial intelligence and ontologies to improve disease classification. Although the results are promising, they also indicate the need for further refinement in managing data heterogeneity. Our classifier improves the identification and categorization of medical information, essential for advancing research, enhancing information access, influencing policy, and supporting personalized treatments. Future work will focus on expanding disease classification to distinguish between attributes such as infectious and hereditary diseases, addressing data heterogeneity, and incorporating multilingual capabilities.

2.
Front Public Health ; 10: 838438, 2022.
Article in English | MEDLINE | ID: mdl-35433572

ABSTRACT

Background: Healthcare data is a rich yet underutilized resource due to its disconnected, heterogeneous nature. A means of connecting healthcare data and integrating it with additional open and social data in a secure way can support the monumental challenge policy-makers face in safely accessing all relevant data to assist in managing the health and wellbeing of all. The goal of this study was to develop a novel health data platform within the MIDAS (Meaningful Integration of Data Analytics and Services) project, that harnesses the potential of latent healthcare data in combination with open and social data to support evidence-based health policy decision-making in a privacy-preserving manner. Methods: The MIDAS platform was developed in an iterative and collaborative way with close involvement of academia, industry, healthcare staff and policy-makers, to solve tasks including data storage, data harmonization, data analytics and visualizations, and open and social data analytics. The platform has been piloted and tested by health departments in four European countries, each focusing on different region-specific health challenges and related data sources. Results: A novel health data platform solving the needs of Public Health decision-makers was successfully implemented within the four pilot regions connecting heterogeneous healthcare datasets and open datasets and turning large amounts of previously isolated data into actionable information allowing for evidence-based health policy-making and risk stratification through the application and visualization of advanced analytics. Conclusions: The MIDAS platform delivers a secure, effective and integrated solution to deal with health data, providing support for health policy decision-making, planning of public health activities and the implementation of the Health in All Policies approach. The platform has proven transferable, sustainable and scalable across policies, data and regions.


Subject(s)
Delivery of Health Care , Health Policy , Decision Making , Humans , Information Storage and Retrieval , Public Health
3.
Artif Intell Med ; 114: 102053, 2021 04.
Article in English | MEDLINE | ID: mdl-33875160

ABSTRACT

MOTIVATION: In the age of big data, the amount of scientific information available online dwarfs the ability of current tools to support researchers in locating and securing access to the necessary materials. Well-structured open data and the smart systems that make the appropriate use of it are invaluable and can help health researchers and professionals to find the appropriate information by, e.g., configuring the monitoring of information or refining a specific query on a disease. METHODS: We present an automated text classifier approach based on the MEDLINE/MeSH thesaurus, trained on the manual annotation of more than 26 million expert-annotated scientific abstracts. The classifier was developed tailor-fit to the public health and health research domain experts, in the light of their specific challenges and needs. We have applied the proposed methodology on three specific health domains: the Coronavirus, Mental Health and Diabetes, considering the pertinence of the first, and the known relations with the other two health topics. RESULTS: A classifier is trained on the MEDLINE dataset that can automatically annotate text, such as scientific articles, news articles or medical reports with relevant concepts from the MeSH thesaurus. CONCLUSIONS: The proposed text classifier shows promising results in the evaluation of health-related news. The application of the developed classifier enables the exploration of news and extraction of health-related insights, based on the MeSH thesaurus, through a similar workflow as in the usage of PubMed, with which most health researchers are familiar.


Subject(s)
Health Communication/standards , MEDLINE/organization & administration , Medical Subject Headings , Research/organization & administration , Big Data , COVID-19/epidemiology , Classification , Diabetes Mellitus/epidemiology , Humans , MEDLINE/standards , Mental Health/statistics & numerical data , SARS-CoV-2 , Semantics
SELECTION OF CITATIONS
SEARCH DETAIL
...