Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 817: 153002, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35031364

ABSTRACT

COVID-19 lockdown brought to a drastic reduction of anthropic impacts on the environment worldwide, including the marine-coastal system. Earth-Observation (EO) data have the potential to monitor and diagnose the effects of the lockdown in terms of water quality. Here we connect the dots among some coastal environmental changes that occurred during the Italian COVID-19 lockdown by using EO data, also seeking to assess connectivity between inland and marine systems. We present a holistic analysis of spatial and temporal variability of environmental parameters in the North Adriatic Sea, Mediterranean basin, exploiting the synergy of different satellite sensors, as well as hydrologic data from in situ observations. Our analysis indicates a favourable interplay of environmental variability that resulted in negative anomalies of Chlorophyll-a concentration, with respect to the climatologic values. Peculiar meteo-oceanographic and hydrological conditions made hard to disentangle potential anthropogenic effects. However, a multi-year hierarchical cluster analysis of riverine remote sensing reflectances groups together the optical properties of inland waters during the lockdown. This emergent cluster highlights the possibility of a second-order, anthropogenic effect that, superimposed to the (first-order) environmental natural causes, may have enhanced water quality during the lockdown.


Subject(s)
COVID-19 , COVID-19/epidemiology , Chlorophyll A , Communicable Disease Control , Environmental Monitoring/methods , Humans , Perception , SARS-CoV-2
2.
PLoS One ; 16(7): e0246012, 2021.
Article in English | MEDLINE | ID: mdl-34228730

ABSTRACT

In depositional intertidal coastal systems, primary production is dominated by benthic microalgae (microphytobenthos) inhabiting the mudflats. This benthic productivity is supporting secondary production and supplying important services to humans including food provisioning. Increased frequencies of extreme events in weather (such as heatwaves, storm surges and cloudbursts) are expected to strongly impact the spatiotemporal dynamics of the microphytobenthos and subsequently their contribution to coastal food webs. Within north-western Europe, the years 2018 and 2019 were characterized by record-breaking summer temperatures and accompanying droughts. Field-calibrated satellite data (Sentinel 2) were used to quantify the seasonal dynamics of microphytobenthos biomass and production at an unprecedented spatial and temporal resolution during these years. We demonstrate that the Normalized Difference Vegetation Index (NDVI) should be used with caution in depositional coastal intertidal systems, because it may reflect import of remains of allochthonous pelagic productivity rather than local benthic biomass. We show that the reduction in summer biomass of the benthic microalgae cannot be explained by grazing but was most probably due to the high temperatures. The fivefold increase in salinity from January to September 2018, resulting from reduced river run-off during this exceptionally dry year, cannot have been without consequences for the vitality of the microphytobenthos community and its resistance to wind stress and cloud bursts. Comparison to historical information revealed that primary productivity of microphytobenthos may vary at least fivefold due to variations in environmental conditions. Therefore, ongoing changes in environmental conditions and especially extreme events because of climate change will not only lead to changes in spatiotemporal patterns of benthic primary production but also to changes in biodiversity of life under water and ecosystem services including food supply. Satellite MPB data allows for adequate choices in selecting coastal biodiversity conservation and coastal food supply.


Subject(s)
Biomass , Biodiversity , Climate Change , Diatoms , Food Chain , Microalgae , Salinity , Seasons , Temperature
3.
Opt Express ; 28(11): 15885-15906, 2020 May 25.
Article in English | MEDLINE | ID: mdl-32549424

ABSTRACT

The Three-Component Reflectance Model (3C) was primarily developed to improve the determination of the remote-sensing reflectance (Rrs) from above-water radiometric hyperspectral measurements performed during sub-optimal conditions (i.e., cloudy sky, variable viewing geometry, high glint perturbations, low illumination conditions). In view of further validating the model and showing its broad range of uses, this work presents the application of 3C to above-water radiometry data collected in oceanic and coastal waters with a variety of measurement conditions. Rrs derived from measurements performed during optimal and slightly sub-optimal conditions exhibit equivalence with Rrs obtained with an established above-water method that is commonly used to support ocean color validation activities. Additionally, the study shows that 3C can still provide relevant Rrs retrievals from field data characterized by low-light illumination, high glint perturbations and variable measurement geometries, for which the established method cannot be confidently applied. Finally, it is shown that the optimization residual returned by the 3C full-spectrum inversion procedure can be a potential relative indicator to assess the quality of derived Rrs.

4.
Opt Express ; 25(24): A1124-A1131, 2017 Nov 27.
Article in English | MEDLINE | ID: mdl-29220989

ABSTRACT

The oldest record of ocean color measurements consists of visual comparisons to a standardized color scale, the Forel-Ule scale (FU). Analysis of FU archived data allows the construction of a century-long time series. In situ protocols of FU measurements require the perceived color to be estimated over the water column above a Secchi disk (SD) at half of the depth where it goes out of sight, whereas satellites retrieve FU over the water column alone. I show in this article that these two methodologies lead to different FU readings and thus, merging both kinds of data will create artificial trends. In case 1 waters, radiative transfer simulations show that measuring over a SD shifts FU between 0 and + 2 in respect to no SD, and there exists no possibility to relate the two in a univocal fashion. A univocal relationship is found if color is expressed in terms of the hue angle, which can be calculated from light spectra or RGB images.

5.
Opt Express ; 22 Suppl 3: A947-59, 2014 May 05.
Article in English | MEDLINE | ID: mdl-24922400

ABSTRACT

Water-leaving radiance is subject to depth variability of the water constituents. The optical penetration depth is strongly dependent on the wavelength λ, which allows to retrieve a non-uniform vertical profile of an optically-active constituent CTSM(z) from remote-sensing reflectance Rrs(λ,Cz). We define the apparent particle concentration CTSM,app(λ) of a vertically homogeneous water column whose Rrs(λ,Cconst) matches Rrs(λ,Cz). Subsequently, we define a vertically-weighted averaged particle concentration CTSM,ave(λ), only dependent on CTSM(z), and retrieve CTSM(z) by minimizing the error between CTSM,app(λ) and CTSM,ave(λ) with genetic algorithms. We conclude that the retrieval is excellent if the sub-surface maximum lays close to the surface or the background concentration of CTSM(z) is low. Conversely, results worsen for opposite conditions, due to insufficient signal strength from superimposed sub-surface maxima.

6.
Article in English | MEDLINE | ID: mdl-18557397

ABSTRACT

Waveguide structures are very popular in the microwave power industry due to their power handling capabilities. Modal expansion of the waveguide fields and application of the circuit theory allow for the division of a complex device into several simpler sections which can be analyzed separately with the best suited method. The modal techniques can be divided into two groups--those which analyze junctions or discontinuities and those which examine propagation characteristics. In this paper, a review of modal techniques for high power applications is given. Modal expansion of the fields in the waveguides is then performed and applied to modeling of k-furcated waveguides. The modal analysis based on the Coupled Mode Method is described for the waveguides partially filled with isotropic materials. A hybrid modal analysis coupled with Finite Element Method suitable for more complex waveguide structures is also described. Computational results obtained for some real-life microwave devices are presented. Excellent agreement was found when comparing the results with those generated with a commercial FDTD simulator demonstrates the validity and reliability of the proposed method.


Subject(s)
Computer-Aided Design , Electronics/instrumentation , Equipment Design/methods , Microwaves , Models, Theoretical , Computer Simulation , Equipment Failure Analysis/methods , Materials Testing
SELECTION OF CITATIONS
SEARCH DETAIL
...