Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 150: 106291, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38103333

ABSTRACT

Biological soft tissues and polymers used in biomedical applications (e.g. in the cardiovascular area) are hyperelastic incompressible materials that commonly operate under multi-axial large deformation fields. Their characterisation requires biaxial tensile testing. Due to the typically small sample size, the gripping of the specimens commonly relies on rakes or sutures, where the specimen is punctured at the edges of the gauge area. This approach necessitates of an apron, excess of material around the gauge region. This work analyses the apron influence on the estimated mechanical response of biaxial tests performed by using a rakes gripping system, with the aim of verifying the test accuracy and propose improved solutions. In order to isolate the effect of the apron, avoiding the influence of anisotropy and inhomogeneity typical of most soft tissues, homogeneous and isotropic hyperplastic samples made from a uniform sheet of casted silicone were tested. The stress-strain response of specimens with different apron sizes/shapes was measured experimentally by means of biaxial testing and digital image correlation. Tests were replicated numerically, to interpret the experimental findings. The apron surrounding the gauge area acts as an additional annular constraint which stiffens the system, resulting in a significant overestimate in the stress values. This error can be avoided by introducing specific cuts in the apron. The study quantifies, for the first time, the correlation between the apron size/shape and the experimental stress overestimation, proposing a research protocol which, although identified on homogeneous hyperelastic materials, can be useful in providing more accurate characterisation of both, synthetic polymers and soft tissues.


Subject(s)
Polymers , Stress, Mechanical , Anisotropy , Biomechanical Phenomena
2.
Front Cardiovasc Med ; 9: 894187, 2022.
Article in English | MEDLINE | ID: mdl-35911543

ABSTRACT

Background: A large majority of thrombi causing ischemic complications under atrial fibrillation (AF) originate in the left atrial appendage (LAA), an anatomical structure departing from the left atrium, characterized by a large morphological variability between individuals. This work analyses the hemodynamics simulated for different patient-specific models of LAA by means of computational fluid-structure interaction studies, modeling the effect of the changes in contractility and shape resulting from AF. Methods: Three operating conditions were analyzed: sinus rhythm, acute atrial fibrillation, and chronic atrial fibrillation. These were simulated on four patient-specific LAA morphologies, each associated with one of the main morphological variants identified from the common classification: chicken wing, cactus, windsock, and cauliflower. Active contractility of the wall muscle was calibrated on the basis of clinical evaluations of the filling and emptying volumes, and boundary conditions were imposed on the fluid to replicate physiological and pathological atrial pressures, typical of the various operating conditions. Results: The LAA volume and shear strain rates were analyzed over time and space for the different models. Globally, under AF conditions, all models were well aligned in terms of shear strain rate values and predicted levels of risk. Regions of low shear rate, typically associated with a higher risk of a clot, appeared to be promoted by sudden bends and focused at the trabecule and the lobes. These become substantially more pronounced and extended with AF, especially under acute conditions. Conclusion: This work clarifies the role of active and passive contraction on the healthy hemodynamics in the LAA, analyzing the hemodynamic effect of AF that promotes clot formation. The study indicates that local LAA topological features are more directly associated with a thromboembolic risk than the global shape of the appendage, suggesting that more effective classification criteria should be identified.

3.
Arch Orthop Trauma Surg ; 142(6): 1155-1165, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34338886

ABSTRACT

PURPOSE: The present study tested and compared the biomechanical properties of four different triplicate graft tendon techniques. METHODS: 32 tripled tendons from the common extensor muscle of bovine fingers were tested on a material testing machine, passing the end loop over a metal rod of a clevis connected to the load cell on the upper side, and fixing the lower end to a clamp. The samples were divided into four groups: (A) tripled with a free end sutured only to one of the two fixed bundles (B) tripled with a free end positioned between the two fixed strands and sutured to both (C) tripled with an S-shape and all the three strands sutured together at the upper and lower extremities of the graft (D) partially quadrupled with the free end sutured together with the other three bundles at the upper extremity. Each sample was pretensioned at 50 N for 10 min and then subjected to 1000 load control cycles between 50 and 250 N. Finally, each sample was subjected to a load to failure test. Authors also present some preliminary results on the feasibility of a non-contact and full-field Thermoelastic Stress Analysis technique, based on Infrared Thermography, to evaluate the level of stress on the whole graft, and hence on each strand, during fatigue loading. RESULTS: Eighty five percent of the samples failed at the level of the clamp. The cyclical elongation progressively decreased in all the samples and there was a simultaneous increase in stiffness. An increased stiffness was noted between Group 2 vs Group 3 and Group 2 vs Group 4 at the 500th and 1000th cycle. The failure loads were as follows: (a) 569.10 N, (b) 632.28 N, (c) 571.68 N, (d) 616.95 N. None of the parameters showed a statistically significant difference between the four groups. CONCLUSION: This study reported similar biomechanical behavior of four different models of tripled grafts suitable for ACL reconstruction. In addition, the biomechanics of overall tripled tendon grafts seems more affected by the viscoelastic property of the tendon itself rather than the preparation method.


Subject(s)
Anterior Cruciate Ligament Reconstruction , Anterior Cruciate Ligament , Animals , Anterior Cruciate Ligament/surgery , Anterior Cruciate Ligament Reconstruction/methods , Biomechanical Phenomena , Cattle , Humans , Materials Testing , Tendons/surgery
4.
Materials (Basel) ; 14(24)2021 Dec 19.
Article in English | MEDLINE | ID: mdl-34947460

ABSTRACT

Nickel-Titanium (NiTi) shape memory alloys subjected to cyclic loading exhibit reversible temperature changes whose modulation is correlated with the applied load. This reveals the presence of reversible thermomechanical heat sources activated by the applied stresses. One such source is the elastocaloric effect, accounting for the latent heat of Austenite-Martensite phase transformation. It is, however, observed that when the amplitude of cyclic loads is not sufficient to activate or further propagate this phase transformation, the material still exhibits a strong cyclic temperature modulation. The present work investigates the thermomechanical behaviour of NiTi under such low-amplitude cyclic loading. This is carried out by analysing the frequency domain content of temperature sampled over a time window. The amplitude and phase of the most significant harmonics are obtained and compared with the theoretical predictions from the first and second-order theories of the Thermoelastic Effect, this being the typical reversible thermomechanical coupling prevailing under elastic straining. A thin strip of NiTi, exhibiting a fully superelastic behaviour at room temperature, was investigated under low-stress amplitude tensile fatigue cycling. Full-field strain and temperature distributions were obtained by means of Digital Image Correlation and IR Thermography. The work shows that the full field maps of amplitude and phase of the first three significant temperature harmonics carry out many qualitative information about the stress and structural state of the material. It is, though, found that the second-order theory of the Thermoelastic Effect is not fully capable of justifying some of the features of the harmonic response, and further work on the specific nature of thermomechanical heat sources is required for a more quantitative interpretation.

5.
Arch Orthop Trauma Surg ; 137(9): 1301-1306, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28674738

ABSTRACT

PURPOSE: To investigate the effect of applying an additional suture to enhance the biomechanical behavior of the suture-meniscus construct used during the transtibial pull-out repair technique. METHODS: A total of 20 fresh-frozen porcine tibiae with intact medial menisci were used. In one half of all specimens (N = 10), two non-absorbable sutures were passed directly over the meniscal root from the tibia side of the meniscus to the femoral side (2SS). In other ten specimens, three sutures were passed over the meniscal root (3SS). All specimens were subjected to cyclic loading followed by load-to-failure testing. Displacement of the construct was recorded at 100, 500, and 1000 cycles. Further, stiffness (500-1000 cycles) and ultimate load and modes of failure of the suture-meniscus construct were also recorded. RESULTS: There was no statistically significant difference between the Group 2SS and Group 3SS at the 1st (1.6 ± 0.7 vs 1.4 ± 0.4 mm) and the 100th cycle (2 ± 0.7 vs 1.8 ± 0.4 mm). At 500 and 1000 cycles, the 2SS fixation technique resulted in significantly more displacement than the 3SS fixation technique (2.8 ± 0.6 vs 2.3 ± 0.5 mm; 3.1 ± 0.7 vs 2.5 ± 0.5 mm) (p < 0.05). No differences between two groups were noted concerning ultimate load to failure and stiffness (500-1000 cycles). CONCLUSION: Three single sutures technique provided superior biomechanical properties compared with the two single sutures technique during the conducted fatigue tests. CLINICAL RELEVANCE: Applying three simple stitches during meniscal root repair might be beneficial for healing of the posterior meniscal root, potentially reducing the post-operative immobilization time.


Subject(s)
Arthroplasty, Replacement, Knee , Biomechanical Phenomena/physiology , Menisci, Tibial , Suture Techniques/statistics & numerical data , Tibia , Animals , Arthroplasty, Replacement, Knee/methods , Arthroplasty, Replacement, Knee/statistics & numerical data , Menisci, Tibial/physiology , Menisci, Tibial/surgery , Sutures , Swine , Tibia/physiology , Tibia/surgery
6.
Arch Orthop Trauma Surg ; 136(11): 1595-1600, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27498103

ABSTRACT

PURPOSE: The purpose of this study was to characterize the biomechanical effect of two grasping suture techniques used during ligament reconstruction: the modified rolling-hitch (MRH) and the modified finger-trap (MFT). METHODS: Flexor profundus tendons were harvested from fresh pig hind-leg trotters. Each specimen was mounted on an electro-mechanic universal testing machine (Instron 3367). In half of all tendons (15 specimens), the suture was passed around the tendon following the MRH knot (Group 1). In the remaining half of all tendons (15 specimens), the suture was passed over a distance of 30 mm according to the MFT suture technique (Group 2). As per standard intra-operative technique, a 1 cm residual tendon stub was left free from suture in all samples. All specimens were preconditioned to a load of 50 N for 10 min, followed by three cycles loading between 50 and 120 N. At this point, each sample was cyclically tensioned between 35 and 240 N, at 1 Hz for 200 cycles. Load-to-failure test was then carried out at a rate of 200 mm/min. RESULTS: Rupture of the suture material at the knot was the mode of failure in all specimens during the loaded to failure test. Significant difference was found between Group 1 vs Group 2 for the elongation between the 0th cycle and 10th cycle, the elongation between the 10th cycle and 200th cycle, the mean stiffness at the 10th cycle, and the mean stiffness at the 190th cycle. No significant differences were noted between Group 1 and Group 2 concerning the ultimate load-to-failure. CONCLUSION: This study showed that both suture methods appear to be biomechanically effective in a porcine tendon model. However, the single-knot grasping technique (MRH) provided superior biomechanical properties compared with the MFT technique.


Subject(s)
Finger Injuries/surgery , Plastic Surgery Procedures/methods , Suture Techniques/instrumentation , Sutures , Tendons/surgery , Animals , Swine
7.
Materials (Basel) ; 8(11): 7371-7388, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-28793643

ABSTRACT

The present work describes the experimental mechanical characterisation of a natural flax fibre reinforced epoxy polymer composite. A commercial plain woven quasi-unidirectional flax fabric with spun-twisted yarns is employed in particular, as well as unidirectional composite panels manufactured with three techniques: hand-lay-up, vacuum bagging and resin infusion. The stiffness and strength behaviours are investigated under both monotonic and low-cycle fatigue loadings. The analysed material has, in particular, shown a typical bilinear behaviour under pure traction, with a knee yield point occurring at a rather low stress value, after which the material tensile stiffness is significantly reduced. In the present work, such a mechanism is investigated by a phenomenological approach, performing periodical loading/unloading cycles, and repeating tensile tests on previously "yielded" samples to assess the evolution of stiffness behaviour. Infrared thermography is also employed to measure the temperature of specimens during monotonic and cyclic loading. In the first case, the thermal signal is monitored to correlate departures from the thermoelastic behaviour with the onset of energy loss mechanisms. In the case of cyclic loading, the thermoelastic signal and the second harmonic component are both determined in order to investigate the extent of elastic behaviour of the material.

8.
Knee Surg Sports Traumatol Arthrosc ; 22(5): 1040-6, 2014 May.
Article in English | MEDLINE | ID: mdl-23539173

ABSTRACT

PURPOSE: A suture passed along the part of the graft that will be inserted into the femoral tunnel is widely used by surgeons, because it could prevent the graft sliding on the femoral fixation device during pulling from the tibial side. The aim of this study was to evaluate the biomechanical effects of suturing the intratunnel femoral part of the graft during an anterior cruciate ligament (ACL) reconstruction. METHODS: Bovine digital extensor tendons and tibias were harvested from 20 fresh-frozen mature bovine knees ranging in age from 18 to 24 months. Quadruple-strand bovine tendons were passed through the tibial tunnel and secured distally with a bioabsorbable interference screw. In one half of all grafts (N = 10), the looped-over part of the graft was sutured in a whipstitch technique over a distance of 30 mm (Group 1). In one half of all grafts (N = 10), the looped-over part was left free from any suture (Group 2). The grafts were preconditioned at 50 N for 10 min, followed by cyclic loading at 1 Hz between 50 N and 250 N for 1,000 cycles. Load-to-failure test was then carried out at a rate of 1 mm/s. RESULTS: There was no statistically significant difference between mean stiffness at pullout and yield load between the two groups. In all specimens on Group 1, failure occurred following to partial breaking and then slipping of the tendons between the screw and the tunnel. Concerning Group 2, in six cases failure occurred as described for Group 1 specimens. In the remaining four cases, failure occurred entirely through the ligament mid-substance. CONCLUSIONS: Suturing in a whipstitch fashion the femoral portion of the graft doesn't affect the mechanical proprieties of the ACL graft. When suspension fixation device is used, suturing the looped-over part of the graft could be helpful in order to provide equal tension in all of the strands of the graft at time of tibial fixation.


Subject(s)
Anterior Cruciate Ligament Reconstruction/methods , Anterior Cruciate Ligament/surgery , Transplants/surgery , Animals , Anterior Cruciate Ligament/physiopathology , Biomechanical Phenomena , Cattle , Femur/surgery , Models, Animal , Suture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...