Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Transl Med ; 22(1): 337, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589873

ABSTRACT

BACKGROUND: The mesenchymal subtype of colorectal cancer (CRC), associated with poor prognosis, is characterized by abundant expression of the cellular prion protein PrPC, which represents a candidate therapeutic target. How PrPC is induced in CRC remains elusive. This study aims to elucidate the signaling pathways governing PrPC expression and to shed light on the gene regulatory networks linked to PrPC. METHODS: We performed in silico analyses on diverse datasets of in vitro, ex vivo and in vivo models of mouse CRC and patient cohorts. We mined ChIPseq studies and performed promoter analysis. CRC cell lines were manipulated through genetic and pharmacological approaches. We created mice combining conditional inactivation of Apc in intestinal epithelial cells and overexpression of the human prion protein gene PRNP. Bio-informatic analyses were carried out in two randomized control trials totalizing over 3000 CRC patients. RESULTS: In silico analyses combined with cell-based assays identified the Wnt-ß-catenin and glucocorticoid pathways as upstream regulators of PRNP expression, with subtle differences between mouse and human. We uncover multiple feedback loops between PrPC and these two pathways, which translate into an aggravation of CRC pathogenesis in mouse. In stage III CRC patients, the signature defined by PRNP-CTNNB1-NR3C1, encoding PrPC, ß-catenin and the glucocorticoid receptor respectively, is overrepresented in the poor-prognosis, mesenchymal subtype and associates with reduced time to recurrence. CONCLUSIONS: An unleashed PrPC-dependent vicious circle is pathognomonic of poor prognosis, mesenchymal CRC. Patients from this aggressive subtype of CRC may benefit from therapies targeting the PRNP-CTNNB1-NR3C1 axis.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Humans , Mice , Animals , Prion Proteins/genetics , Prion Proteins/metabolism , beta Catenin/metabolism , Glucocorticoids , Colonic Neoplasms/genetics , Colorectal Neoplasms/genetics , Phenotype , Prognosis , Wnt Signaling Pathway , Gene Expression Regulation, Neoplastic , Cell Line, Tumor
2.
Cell Mol Gastroenterol Hepatol ; 15(3): 689-715, 2023.
Article in English | MEDLINE | ID: mdl-36356835

ABSTRACT

BACKGROUND & AIMS: Axin1 is a negative regulator of wingless-type MMTV integration site family, member 1 (Wnt)/ß-catenin signaling with tumor-suppressor function. The Wnt pathway has a critical role in the intestine, both during homeostasis and cancer, but the role of Axin1 remains elusive. METHODS: We assessed the role of Axin1 in normal intestinal homeostasis, with control, epithelial-specific, Axin1-knockout mice (Axin1ΔIEC) and Axin2-knockout mice. We evaluated the tumor-suppressor function of Axin1 during chemically induced colorectal tumorigenesis and dextran sulfate sodium-induced colitis, and performed comparative gene expression profiling by whole-genome RNA sequencing. The clinical relevance of the Axin1-dependent gene expression signature then was tested in a database of 2239 clinical colorectal cancer (CRC) samples. RESULTS: We found that Axin1 was dispensable for normal intestinal homeostasis and redundant with Axin2 for Wnt pathway down-regulation. Axin1 deficiency in intestinal epithelial cells rendered mice more susceptible to chemically induced colon carcinogenesis, but reduced dextran sulfate sodium-induced colitis by attenuating the induction of a proinflammatory program. RNA-seq analyses identified an interferon γ/T-helper1 immune program controlled by Axin1 that enhances the inflammatory response and protects against CRC. The Axin1-dependent gene expression signature was applied to human CRC samples and identified a group of patients with potential vulnerability to immune checkpoint blockade therapies. CONCLUSIONS: Our study establishes, in vivo, that Axin1 has redundant function with Axin2 for Wnt down-regulation and infers a new role for Axin1. Physiologically, Axin1 stimulates gut inflammation via an interferon γ/Th1 program that prevents tumor growth. Linked to its T-cell-mediated effect, the colonic Axin1 signature offers therapeutic perspectives for CRC.


Subject(s)
Colitis , Interferon-gamma , Mice , Animals , Humans , Dextran Sulfate/toxicity , Carcinogenesis/genetics , Colitis/chemically induced , Wnt Signaling Pathway/genetics , Mice, Knockout , Axin Protein/genetics , Axin Protein/metabolism
3.
Proc Natl Acad Sci U S A ; 117(20): 11136-11146, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32371487

ABSTRACT

The intestinal epithelium acts as a barrier between the organism and its microenvironment, including the gut microbiota. It is the most rapidly regenerating tissue in the human body thanks to a pool of intestinal stem cells (ISCs) expressing Lgr5 The intestinal epithelium has to cope with continuous stress linked to its digestive and barrier functions. Epithelial repair is crucial to maintain its integrity, and Lgr5-positive intestinal stem cell (Lgr5+ISC) resilience following cytotoxic stresses is central to this repair stage. We show here that autophagy, a pathway allowing the lysosomal degradation of intracellular components, plays a crucial role in the maintenance and genetic integrity of Lgr5+ISC under physiological and stress conditions. Using conditional mice models lacking the autophagy gene Atg7 specifically in all intestinal epithelial cells or in Lgr5+ISC, we show that loss of Atg7 induces the p53-mediated apoptosis of Lgr5+ISC. Mechanistically, this is due to increasing oxidative stress, alterations to interactions with the microbiota, and defective DNA repair. Following irradiation, we show that Lgr5+ISC repair DNA damage more efficiently than their progenitors and that this protection is Atg7 dependent. Accordingly, we found that the stimulation of autophagy on fasting protects Lgr5+ISC against DNA damage and cell death mediated by oxaliplatin and doxorubicin treatments. Finally, p53 deletion prevents the death of Atg7-deficient Lgr5+ISC but promotes genetic instability and tumor formation. Altogether, our findings provide insights into the mechanisms underlying maintenance and integrity of ISC and highlight the key functions of Atg7 and p53.


Subject(s)
Autophagy-Related Protein 7/metabolism , Autophagy/physiology , Intestines/physiology , Stem Cells/metabolism , Animals , Apoptosis , Autophagy-Related Protein 7/genetics , DNA Damage , DNA Repair , Disease Models, Animal , Epithelial Cells/metabolism , Female , Genes, p53/genetics , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestines/pathology , Male , Mice , Mice, Knockout , Receptors, G-Protein-Coupled/metabolism , Stem Cells/cytology
4.
J Endocrinol ; 244(1): 133-148, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31600727

ABSTRACT

Islet inflammation is associated with defective ß cell function and mass in type 2 diabetes (T2D). Glycogen synthase kinase 3 (GSK3) has been identified as an important regulator of inflammation in different diseased conditions. However, the role of GSK3 in islet inflammation in the context of diabetes remains unexplored. In this study, we investigated the direct implication of GSK3 in islet inflammation in vitro and tested the impact of GSK3 inhibition in vivo, on the reduction of islet inflammation, and the improvement of glucose metabolism in the Goto-Kakizaki (GK) rat, a spontaneous model of T2D. GK rats were chronically treated with infra-therapeutic doses of lithium, a widely used inhibitor of GSK3. We analyzed parameters of glucose homeostasis as well as islet inflammation and fibrosis in the endocrine pancreas. Ex vivo, we tested the impact of GSK3 inhibition on the autonomous inflammatory response of non-diabetic rat and human islets, exposed to a mix of pro-inflammatory cytokines to mimic an inflammatory environment. Treatment of young GK rats with lithium prevented the development of overt diabetes. Lithium treatment resulted in reduced expression of pro-inflammatory cytokines in the islets. It decreased islet fibrosis and partially restored the glucose-induced insulin secretion in GK rats. Studies in non-diabetic human and rat islets exposed to inflammatory environment revealed the direct implication of GSK3 in the islet autonomous inflammatory response. We show for the first time, the implication of GSK3 in islet inflammation and suggest this enzyme as a viable target to treat diabetes-associated inflammation.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Glycogen Synthase Kinase 3/metabolism , Islets of Langerhans/metabolism , Animals , Disease Models, Animal , Fibrosis , Glucose/metabolism , Humans , Inflammation , Insulin Secretion , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...